TY - CONF A1 - Rhode, Michael A1 - Czeskleba, Denis A1 - Kannengiesser, Thomas T1 - Combined effect of heating rate and restraint condition on stress relief cracking susceptibility during PWHT of thick-walled Cr-Mo-V steel submerged arc welded joints N2 - Contemporary steels creep-resistant steels like the 13CrMoV9-10 are used as thick plates e.g., for applications in hydrocrackers. The large plate thickness requires high efficiency welding processes like submerged arc welding (SAW) and a mandatory post weld heat treatment (PWHT). The PWHT-parameters stem from a combination of empirical knowledge and traditional experiments on free shrinking (FS) welds. In that connection, the formation of so-called stress-relief cracking (SRC) must be anticipated. The SRC susceptibility of a welded component is a complex combination and interaction of com-ponent specific, thermal, and metallurgical factors. Many of which have to date not been conclusively researched. For example, it is well known that SRCs develop during PWHT due to formation and growth of carbides on prior austenite grain boundaries, resulting in a significant hardness increase (secondary hardening) and toughness decrease. This leads to a high SRC susceptibility of the coarse grain heat-affected zone (CGHAZ) of the last weld bead during PWHT. This is intensified in case of high residual stresses from the component-specific, structurally induced stiffness. In combination with multi-layer welding this leads to a multiaxial stress distribution. Nonetheless, the combined effect of PWHT and high-residual stresses on the SRC formation is merely unknown. For that reason, this study presents the effect of different heating rates in conjunction with a certain component stiffness. For that reason, SAW joints of 13CrMoV9-10 steel were investigated under FS and defined external restraint condition. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Stress relief cracking KW - Welding KW - Post weld heat treatment KW - Submerged arc welding KW - Cr-Mo-V steel KW - Creep-resisting steel PY - 2024 AN - OPUS4-59673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -