TY - CONF A1 - Rhode, Michael T1 - Influence of heat control on hydrogen distribution in high-strength multi-layer welds with narrow groove N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa are gaining popularity in civil engineering and construction of heavy vehicles. With increasing yield strength, the susceptibility for degradation of the mechanical properties in presence of diffusible hydrogen, i.e. hydrogen-assisted cracking (HAC) generally increases. HAC is a result of the critical interaction of local microstructure, mechanical load and hydrogen concentration. In existing standards for welding of HSLA steels, recommendations (preheating, interpass temperature and hydrogen removal heat treatment) are given to limit the amount of introduced hydrogen during welding. The recommendations are based on investigations with conventional arc welding processes. In the past decade, modern weld technologies were developed to enable welding of narrower weld seams with V-grooves of 30°, e.g. the modified spray arc process. In that connection, a reduced number of weld runs and weld volume are important technical and, hence, economic benefits. In the present study, the hydrogen distribution in S960QL multi-layer welds with thickness of 20 mm was analyzed depending on heat control. The influence of different weld seam opening angles (grooves), heat input, interpass temperature and hydrogen removal procedures was investigated. The results show that weldments with narrow groove contained increased diffusible hydrogen amount. Reasons had been longer diffusion path and higher wire feeding rate compared to conventional welds with wider 60° Vgroove. Hydrogen concentration has been reduced by decreasing both the heat input and interpass temperature. Hydrogen free weldments were achieved via hydrogen removal heat treating at 250 °C for 5 h subsequently after welding. Regarding the strength of the investigated steel, it is recommended to conduct a heat treatment after welding. For the first time, hydrogen concentration gradients were experimentally determined across the weld seam thickness in HSLA multi-layer welds. T2 - Intermediate Meeting of IIW Commission II-A CY - Genoa, Italy DA - 05.03.2018 KW - Hydrogen assisted cracking KW - Welding KW - Heat control KW - High-strength steel PY - 2018 AN - OPUS4-44426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Specimen temperature during CGHE and influence on hydrogen determination N2 - Hydrogen determination in weld seams is standardized in ISO 3690. In accordance to this standard, a defined time for hydrogen collection has to be anticipated for different extraction temperatures. In other words, the temperature is the most important value that has to be monitored in addition to the aimed hydrogen determination. The specimen geometry has influence on the real sample temperature during CGHE vs. the adjusted furnace temperature. This presentation gives a short summary on possible influences on the "correct" hydrogen determination temperature during carrier gas hot extraction (CGHE) using infrared radiation driven furnace. The main findings are: (1) specimen surface is important in terms of polished or oxidized condition, (2) specimen geometry is important for fast heating, (3) PID-values of control software are a considerable influence to accelerate the heating process depite thick specimens and (4) independent sample temperature determination before CGHE is strongly recommended. T2 - Intermediate Meeting of IIW Subcommission II-E CY - Genoa, Italy DA - 05.03.2018 KW - Hydrogen KW - Welding KW - Carrier gas hot extraction KW - Temperature KW - Measurement PY - 2018 AN - OPUS4-44427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - "On how to influence your results" - A review on carrier gas hot extraction parameters for hydrogen determination in welded specimens N2 - Carrier gas hot extraction (CGHE) is a commonly applied technique for determination of hydrogen in welded joints using a thermal conductivity device (TCD) for quantitative measurement. The CGHE is based on the accelerated hydrogen effusion due to thermal activation at elevated temperatures. The ISO 3690 standard suggests different specimen geometries as well as necessary minimum extraction time vs. temperature. They have the biggest influence on precise hydrogen determination. The present study summarizes the results and experience of numerous test runs with different specimen temperatures, geometries and factors that additionally influence hydrogen determination. They are namely: specimen surface (polished/as-welded), limited TCD sensitivity vs. specimen volume, temperature measurement vs. effects of PID-furnace controller as well as errors due to insufficient data assessment. Summarized, the temperature is the driving force of the CGHE. Two different methods are suggested to increase the heating rate up the reach the desired extraction temperature without changing the experimental equipment. Suggestions are made to improve the reliability of hydrogen determination depended on the hydrogen signal stability during extraction accompanied by evaluation of the recorded data. Generally, independent temperature measurement with calibration specimens is useful for further data analysis, especially if this data is used for calculation of trapping kinetics by thermal desorption analysis (TDA). T2 - IIW Annual Assembly and International Conference 2018, Meeting of Commission II-E CY - Nusa Dua, Bali Island, Indonesia DA - 15.07.2018 KW - Carrier gas hot extraction (CGHE) KW - Welding KW - ISO 3690 KW - Hydrogen KW - Experimental design PY - 2018 AN - OPUS4-45520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Joining processes for components in hydrogen technologies: Current need and future importance N2 - This presentation gives an overview on the importance of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the three technological fields: hydrogen storage, transport and use (in terms of the emerging field of additive manufacturing). Finally, some remarks are given for necessary changes in the standardization. T2 - IIW Intermediate Meeting, Comm. II-A "Welding Metallurgy" CY - Online meeting DA - 17.03.2022 KW - Hydrogen KW - Welding KW - Research KW - Review KW - Additive manufacturing PY - 2022 AN - OPUS4-54488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Joining Processes in Hydrogen Technologies - Current need and future R&D activites, a review N2 - This study gives an overview on the important field of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the different technological field of hydrogen generation, storage, transport and use. In addition, the emerging field of additive manufacturing is included. Finally, some remarks are given for necessary changes in the standardization and its challenges. T2 - 46th Seminar - Additive Manufacturing, Hydrogen, Energy, Integrity CY - Online meeting DA - 12.10.2021 KW - Hydrogen KW - Joining process KW - Welding KW - Review KW - Research and Development PY - 2021 AN - OPUS4-53554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen in weld joints - An underestimated risk? - Utilization potential of gas analytics versus safety of welded components N2 - Hydrogen was once called “the versatile embrittler” [1], which summarizes very well the effect on reduction of ductility and/or toughness in technical alloys like steel. In that connection, welding is one of the most important component fabrication technologies. During welding, hydrogen can be transferred to the weld pool from manifold sources (like contaminations, residuals at the surface, etc.). As hydrogen embrittles a material, the safety of welded components with hydrogen is always a critical issue. Weld heat input causes additional changes in the microstructure like grain growth or partial dissolution of precipitates and many more. All these things influence the mechanical properties and also represent hydrogen traps. These traps decrease the hydrogen diffusion compared to the ideal lattice. The result can be so-called delayed hydrogen assisted cracking (HAC) of the weld joint due to the significantly decreased diffusivity by trapped hydrogen. This is often an underestimated risk as those cracks can appear in the weld joint even after some days! It is essential to know about hydrogen ingress during welding and the microstructure specific hydrogen diffusion. Both are depended on weld parameter influence and the chemical composition of the base material and weld metal. For that purpose, gas analytic methods like solid-state carrier gas hot extraction (CGHE) are useful tools to: (1) identify detrimental hydrogen concentrations from weld joints, (2) binding energies from hydrogen traps by thermal desorption analysis or (3) high-temperature diffusion coefficients. Those values are extremely important for welding practice in terms of recommendations on realistic hydrogen removal heat treatment (HRHT) after welding. Considering the increasing use of “digital” experiments, the data is also needed for reliable numerical simulations of HAC process or HRHT-effectiveness. The present contribution gives an overview on the influence of hydrogen on weld joints, the necessity, methods and standards for hydrogen determination (CGHE) with the aim of fabrication of safe welded and crack-free components. [1] R. A. Oriani (1987), Corrosion 43(7):390-397. doi: 10.5006/1.3583875 T2 - 20. Tagung Festkörperanalyse - FKA20 CY - Vienna, Austria DA - 01.07.2019 KW - Hydrogen KW - Welding KW - Gas analytic PY - 2019 AN - OPUS4-48402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Welding (and joining) technologies for the hydrogen economy - a short overview N2 - This study gives an overview on the important field of joining processes for component fabrication in hydrogen technologies. The current main issues and future perspectives are highlighted for the different technological field of hydrogen generation, storage, transport and use. In addition, the emerging field of additive manufacturing is included. Some remarks are given for standardization and regulations. T2 - Meeting of the European Welding Association (EWA), Executive Committee (EC) 1 CY - Frankfurt am Main, Germany DA - 22.03.2023 KW - Hydrogen KW - Welding KW - Research KW - Study PY - 2023 AN - OPUS4-57222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Reliable hydrogen determination in metallic materials and their weld joints: Parameters and challenges N2 - In the course of tomorrow's hydrogen-based energy transition, the construction of the corresponding infrastructure will play a central role. The majority of materials used to date are typically welded for component fabrication. In that context, steels are widely applied and can be prone to hydrogen embrittlement. This includes the classical delayed cold cracking during welding processing as well as embrittlement phenomena during operation. For the evaluation of any hydrogen effect on, for example, the mechanical properties of a welded metallic material, the hydrogen content must be precisely determined. In the case of welds, for example, according to ISO 3690, this is the isothermal carrier gas hot extraction (CGHE). CGHE is based on accelerated hydrogen degassing due to thermal activation of hydrogen at elevated temperatures. In addition to the pure quantification of hydrogen, thermal desorption analysis (TDA) with varied heating rates can be used to determine and evaluate the bonding state at microstructural defects in the material. For both techniques, experimental and measurement influences have to be considered, which have a great effect on the result. For CGHE, for example, ISO 3690 suggests different sample geometries as well as minimum extraction times. The present study summarizes results and experiences of numerous investigations with different sample temperatures and geometries (ISO 3690 type B and cylindrical TDA samples) regarding: the influence of the sample surface (polished/welded), measurement accuracies depending on the sample volume as well as the insufficient monitoring of the effect of the PI controller on the extraction temperature. In particular, a deviating extraction temperature to the set temperature, can significantly falsify the measurement results. Based on the results, methods are shown to quickly reach the desired extraction temperature without having to physically interfere with the measurement equipment. This serves to substantially improve the reliability of hydrogen measurement through increased signal stability and accelerated hydrogen desorption. In general, an independent temperature measurement with dummy samples for the selected heating procedure is advisable to exclude possible unwanted temperature influences already before the measurement. In addition (and way more important), the methods described can be transferred directly to industrial applications. T2 - 47th MPA-Seminar CY - Stuttgart, Germany DA - 10.10.2023 KW - Hydrogen assisted cracking KW - Carrier gas hot extraction KW - Welding KW - ISO 3690 KW - Metals PY - 2023 AN - OPUS4-58677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Joining technologies for hydrogen components: current need and future perspectives N2 - The study provides an overview of the aspects of joining and its importance in manufacturing of components for the more and more important field of hydrogen as key factor for the energy transition to a decarburized future. To this end, the fundamentals of the technology fields of hydrogen production, storage, transport, and application are presented and the state of the art of manufacturing of components for hydrogen technologies by joining is summarized. Based on representative examples from practice, research and development, the importance of joining technology in hydrogen technologies is clearly highlighted and perspectives for the future are derived. From a macroeconomic perspective, the focal points, or trends of joining technologies here include: the erection of new infrastructure for hydrogen storage and transport, and the safe conversion of existing natural gas infrastructure and its challenges for welded materials. In addition, we show the problems that are anticipated with in-service repair welding of hydrogen pipelines. In hydrogen applications, the efficient mass production of fuel cells and electrolysers is becoming increasingly important. For that reason, the importance of additive manufacturing is highlighted. Finally, the challenges for technical regulations and standardization by using hydrogen are shown. T2 - AJP 2023: 3rd International Conference on Advanced Joining Processes 2023 CY - Braga, Portugal DA - 19.10.2023 KW - Hydrogen KW - Infractstructure KW - Joining KW - Welding KW - Research PY - 2023 AN - OPUS4-58674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Microalloying influence on precipitation behavior and mechanical properties of welded high strength structural steels N2 - Microalloying elements, such as Nb and Ti, are essential for the targeted mechanical strength of quenched and tempered, high-strength fine-grained structural steels with a nominal yield strength ≥ 690 MPa. Current specifications for chemical composition only provide upper limits for manufacturers. But even small deviations in the alloying route can have a drastic effect on the mechanical properties. Thus, an adequate prediction of the weldability and the integrity of the welded joint becomes difficult or even impossible due to the varying composition and, hence, the microstructures. Undesirable side effects are the possible softening of the heat-affected zone (HAZ) as well as the opposite effect of hardening. Against this background, different microalloying routes with varying Ti and Nb contents are systematically investigated for the first time on specially designed lab-cast alloys. The basis of each alloy route was the common S690QL in terms of both the chemical composition as well as the heat treatment. To investigate the weldability, three-layer welds were performed using metal active gas welding (MAG) and critical microstructural areas with high softening/hardening were identified. The scope was here on the identification of phase transformations during cooling and on the respective metallurgical precipitation behavior. Isothermal and non-isothermal phase calculations were performed using Thermo-Calc® and showed that the prediction of the non-equilibrium precipitation characteristics during welding is not trivial, especially for this relatively complex chemical composition. The mechanical properties of the welded joints were identified by both Charpy tests (toughness) and tensile tests (strain and strength). During the test, the local straining behavior of the welded joints, was identified using a digital image correlation (DIC) system, see Figure 1. Despite the generally good weldability of the materials, the results show a significant influence of the microalloying route as well as the welding heat input on the different precipitation kinetics. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - High-strength KW - Steel KW - Mechanical properties KW - Welding KW - Thoughness PY - 2023 AN - OPUS4-58221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -