TY - CONF A1 - Richter, Tim A1 - Diese, Marcel A1 - Rhode, Michael A1 - Schroepfer, Dirk A1 - Richter, Tim T1 - Characterization of cracking phenomena in TIG welds of high and medium entropy alloy N2 - Multi-element systems with defined entropy (HEA - High Entropy Alloy or MEA - Medium Entropy Alloy) are rather new material concepts that are becoming increasingly important in materials research and development. Some HEA systems show significantly improved properties or combinations of properties, e.g., the overcome of the trade-off between high strength and ductility. Thus, the synthesis, the resulting microstructures, and properties of HEA have been primarily investigated so far. In addition, processing is crucial to achieve a transfer of potential HEA/MEA materials to real applications, e.g. highly stressed components. Since fusion welding is the most important joining process for metals, it is of vital importance to investigate the weldability of these materials. However, this has rarely been the subject of research up to date. For that reason, in this work the weldability depending on the surface preparation of a CoCrFeMnNi-HEA and a CoCrNi-MEA for TIG welding is investigated. The fusion welding of longer plates is described here for the first time for the CoCrNi alloy. The welds of both materials showed distinct formation of cracks in the heat affected zone (HAZ). Optical and scanning electron microscopy analysis clearly confirmed an intergranular fracture topography. But based on the results, the crack mechanism cannot be conclusively clarified as either a liquid metal embrittlement (LME) or hot cracking like liquid film separation occurred. T2 - 2nd International Conference on Advanced Joining Processes CY - Online meeting DA - 21.10.2021 KW - High Entropy Alloy KW - TIG welding KW - Cracking PY - 2021 AN - OPUS4-53607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schroepfer, Dirk A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim T1 - Local mechanical properties of TIG dissimilar metal welded CoCrFeMnNi high-entropy alloy to austenitic steel AISI 304 N2 - Multiple principal element alloys (MPEA) encompass the well-known high entropy alloys (HEAs). MPEA/HEA represent a new class of materials consisting of at least three alloying elements, each containing 5 to 35 at.-%. This alloying concept thus differs fundamentally from conventional materials such as steel or nickel alloys. For this purpose, the alloying elements are specifically selected, and the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. In particular, conflicting goals, such as the trade-off between strength and ductility in conventional steels, are overcome. In the last 20 years, however, the focus has been on material synthesis. With the increase in available material quantities, the focus is now on pro-cessing issues such as joining and welding processes. The weldability of MPEA has received very little atten-tion so far. Experience with dissimilar metal welds (DMWs) is completely lacking but is essential for the appli-cation of these materials in combination with conventional materials. The present study presents, comprehen-sive experimental results on the weldability of MPEA-DMWs. For that purpose, a Co20Cr20Fe20Mn20Ni20 HEA in cold-rolled and heat-treated condition was joined by means of tungsten inert gas welding (TIG) with the austenitic Cr-Ni steel AISI 304. The DMWs resulted in interesting mechanical properties. They were obtained by instrumented tensile tests as well as the local deformation in the weld area by using digital image correlation (DIC) technique. A significant softening in the heat-affected zone (HAZ) of the MPEAs as well as a slightly reduced tensile strength with a significant decrease of the elongation at fracture were found. The experiments provided proof in principle of the weldability of the MPEAs for DMWs with conventional materials that ensure a corresponding capability for mechanical loading. This allows further considerations on the application of these innovative materials. T2 - IIW Annual Assembly, Meeting of Commission C-II CY - Singapore DA - 18.07.2023 KW - High-entropy alloy KW - Welding KW - Microstructure KW - Mechanical properties KW - Dissimilar metal weld PY - 2023 AN - OPUS4-57978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -