TY - CONF A1 - Launert, B. A1 - Rhode, Michael A1 - Pasternak, H. A1 - Kannengießer, Thomas ED - Dubina, D. ED - Ungureanu, V. T1 - Welding Residual Stresses in High-strength Steel. Experimental Results N2 - This article presents the latest results of an ongoing national research project on improved models for the prediction of welding residual stresses of thick-plated welded I-girders. The experimental program is presented and the importance of different influencing factors on the residual stresses is discussed in detail. All results are compared for mild (S355J2+N) and high strength (S690QL) steel. Finally, conclusions for further works are drawn. T2 - SDSS 2016 - The International Colloquium on Stability and Ductility of Steel Structures - SDSS 2016 CY - Timisoara, Romania DA - 30.05.2016 KW - Residual Stresses KW - Welding KW - High-Strength Steel KW - I-Girder KW - Component Test PY - 2016 SN - 978-92-9147-133-1 VL - 2016 SP - 517 EP - 524 PB - Ernst & Sohn AN - OPUS4-37890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pasternak, H. A1 - Launert, B. A1 - Rhode, Michael A1 - Kannengießer, Thomas ED - Zingoni, A. T1 - Residual Stresses and Imperfections in Welded High-strength I-shape Sections N2 - This article addresses the imperfections caused by the weld assembly in I-shape sections made of two structural steel grades. Load influencing imperfections are assumed as deviations from the ideal shape (e.g. bending distortion) and longitudinal residual stresses. The quality of a numerically aided design of components exposed to either compression and/or bending is significantly affected, depending on these parameters. The Eurocode (EC3) provides robust simplified models. As a result, the Ultimate Limit State (ULS) is approached on a conservative basis. The following investigations are aimed at providing further guidance on these values in component-like specimens. The long term goal is an improved understanding of the load-bearing capacity of such sections. As a first step in this process, the experimental and corresponding numerical studies are presented. T2 - 6th International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016) CY - Cape Town, South Africa DA - 05.09.2016 KW - Residual Stresses KW - Welding KW - High-strength Steel KW - Numerical Modeling KW - Component PY - 2016 SN - 978-1-138-02927-9 VL - 2016 SP - 1139 EP - 1146 PB - CRC Press, Taylor & Francis Group CY - Boca Raton, FL, USA AN - OPUS4-37888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Launert, B. A1 - Szczerba, R. A1 - Gajewski, M. A1 - Rhode, Michael A1 - Pasternak, H. A1 - Gizejowski, M. T1 - The buckling resistance of welded plate girders taking into account the influence of post-welding imperfections - Part 1: Parameter study N2 - Welding is the most important joining technique and offers the advantage of customizable plate thicknesses. On the other hand, welding causes residual stresses and deformations influencing the load carrying capacity. Their consideration in the design requires simple and fast models. Though welding simulation has contributed to accurately access to these values nowadays, their application to large components remains still in a less practicable range. Nevertheless, many studies emphasized the need to make corrections in recently available simplified models. Especially the influence of residual stresses seems somewhat overestimated in many cases if comparing conventional structural steel S355 and high-strength steel S690. In the age of computer-aided design, an improved procedure to implement weld-inducted imperfections appears overdue. This will be presented in two parts. The first part illustrates the potential influence of post-welding imperfections exemplified for weak axis buckling in comparison with the general method in accordance with Eurocode 3. Residual stresses and initial crookedness were varied systematically in order to produce a scatter band of capacities. An approach to characterize the borders of these imperfections was untertaken before that. The excessive scattering of reduction factors for the load bearing capacity demonstrates the importance of these variables. Results were finally evaluated against advanced simulation models which will be further detailed in part two of this contribution. KW - Welded Plate Girders KW - Stability KW - Post-welding Imperfections KW - Residual Stresses KW - Parameter Study PY - 2017 U6 - https://doi.org/10.3139/120.110964 SN - 0025-5300 SN - 2195-8572 VL - 59 IS - 1 SP - 47 EP - 56 PB - Carl Hanser Verlag CY - München AN - OPUS4-38922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Launert, B. A1 - Rhode, Michael A1 - Kromm, Arne A1 - Pasternak, H. A1 - Kannengießer, Thomas T1 - Measurement and numerical modeling of residual stresses in welded HSLA component-like I-girders N2 - The present contribution shows the residual stress results obtained from experiments with the sectioning method in comparison to global(structural) welding simulation models on component-like (i.e., large scale) I-girders made of structural steel grades S355 and S690QL. Plates were welded by conventional gas metal arc welding using two different heat inputs. In addition, the base material was assumed to be stress-free. Based on these results, conclusions and recommendations for the design of welded I-girders are drawn. T2 - IIW - Annual Assembly 2016 CY - Melbourne, Australia DA - 10.07.2016 KW - Residual Stresses KW - Microalloyed Steels KW - Girders KW - MAG Welding KW - Numerical Simulation PY - 2016 U6 - https://doi.org/10.1007/s40194-016-0413-x SN - 1878-6669 SN - 0043-2288 VL - 61 IS - 2 SP - 223 EP - 229 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-38919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Rhode, Michael A1 - Launert, B. A1 - Dixneit, Jonny A1 - Kannengießer, Thomas A1 - Pasternak, H. ED - Olden, T.-M. ED - Muransky, O. ED - Edwards, L. T1 - Combining sectioning method and X-ray diffraction for evaluation of residual stresses in welded high strength steel components N2 - Residual stresses and distortions in welded I-girders for steel construction are relevant when evaluating the stability of steel beams and column members. The application of high strength steels allows smaller wall thicknesses compared to conventional steels. Therefore, the risk of buckling has to be considered carefully. Due to the lack of knowledge concerning the residual stresses present after welding in high strength steel components conservative assumptions of their level and distribution is typically applied. In this study I-girders made of steels showing strengths of 355 MPa and 690 MPa were welded with varying heat input. Due to the dimension of the I-girders and the complex geometry the accessibility for residual stress measurement using X-ray diffraction was limited. Therefore, saw cutting accompanied by strain gauge measurement has been used to produce smaller sections appropriate to apply X-ray diffraction. The stress relaxation measured by strain gauges has been added to residual stresses determined by X-ray diffraction to obtain the original stress level and distribution before sectioning. The combination of both techniques can produce robust residual stress values. From practical point of view afford for strain gauge application can be limited to a number of measuring positions solely to record the global amount of stress relaxation. X-ray diffraction can be applied after sectioning to determine the residual stresses with sufficient spatial resolution. T2 - ICRS 2016 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 03.07.2016 KW - Welding KW - Residual Stress KW - Sectioning Method KW - X-Ray Diffraction KW - Component Testing PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389206 SN - 978-1-94529117-3 SN - 978-1-94529117-6 SN - 2474-395X VL - 2 SP - 163 EP - 168 PB - Materials Research Forum LLC CY - Millersville (PA), USA AN - OPUS4-38920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Launert, B. A1 - Rhode, Michael A1 - Kromm, Arne A1 - Pasternak, H. A1 - Kannengießer, Thomas ED - Olden, T.-M. ED - Muransky, O. ED - Edwards, L. T1 - Residual stress influence on the flexural buckling of welded I-girders N2 - The nonlinear analysis became a common tool to precisely assess the load-bearing behavior of steel beam and column members. The failure level is significantly influenced by different types of imperfections, among geometric also structural imperfections (residual stresses). Here are still gaps in the knowledge. Nowadays, 3-D welding simulation developed to a level where it could provide reliable estimation of weld-induced distortion and residual stresses. Nevertheless, modelling and computational effort are still in a less practicable range. In this study a simplified procedure to implement residual welding stresses in continuous large scale members is proposed and the influence on the ultimate limit state of slender members in compression is evaluated for two common structural steel grades. The results showed significant improvements in the utilization of load bearing capacity compared with simplified design methods. The comparatively general approach in this study offers potential for future optimization. T2 - ICRS 2016 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 03.07.2016 KW - Stability Design KW - Finit Element Method KW - 2-D Welding Simulation KW - Inherent Strain KW - Plasticity-based Analysis PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389210 SN - 978-1-94529117-3 SN - 978-1-94529117-6 SN - 2474-395X VL - 2 SP - 109 EP - 114 PB - Materials Research Forum LLC CY - Millersville (PA), USA AN - OPUS4-38921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Pasternak, H. A1 - Launert, B. A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Erhöhung der Tragfähigkeit geschweißter I-Träger aus hochfestem Baustahl durch verbesserte Ansätze zur Berücksichtigung von Eigenspannungen N2 - In vielen Bereichen des modernen Stahlbaus kommen geschweißte Vollwandträger, wie I-Träger zum Einsatz. Im Gegensatz zu Walzprofilen können die Bauhöhe, die Querschnittsform und die Blechdicken an die Beanspruchung angepasst werden, wodurch sich wirtschaftliche Vorteile erzielen lassen. Dabei werden heutzutage immer häufiger hochfeste Feinkornbaustähle mit (Mindest-) Fließgrenzen bis 690 MPa eingesetzt. Zur verbesserten Ausnutzung des Tragfähigkeitspotenzials geschweißter Profile aus diesen Stählen existieren keine geeigneten Modelle zur Erfassung der schweißfertigungsbedingten Eigenspannungen an realen Komponenten. Diese Daten werden durch konservative Annahmen angenähert. Die potentielle Tragfähigkeit geschweißter Konstruktionen wird daher in der Regel unterschätzt. Die Eigenspannungsannahmen in DIN EN 1993 basieren auf starken Vereinfachungen, bspw. im Rahmen sog. „Ersatzstabnachweise“. Diese setzen die Proportionalität der Eigenspannungsamplituden zur Fließgrenze voraus. Vergleichsrechnungen mit einem parametrisierten Eigenspannungsmodell zeigten mögliche Abweichungen in den berechneten Tragfähigkeiten über mehrere Knicklinien. Die Festlegungen hinsichtlich der anzuwendenden Knicklinie beeinflussen jedoch die Blechdicken und somit in erheblichem Maße auch die Fertigungskosten. Als Optimierungsstrategie wurden in diesem Forschungsprojekt deswegen unterschiedliche anwendungsorientierte Modellansätze entwickelt, welche mithilfe nichtlinearer Traglastberechnungen, die höhere Ausnutzung von Tragfähigkeitsreserven ermöglichen sollen. Forschungsziel war somit primär die Entwicklung und Bereitstellung entsprechender Berechnungsansätze. Experimentell wurde hierzu der Eigenspannungszustand von konventionell geschweißten Strukturen am Beispiel der im Stahlbau besonders häufig verwendeten I-Träger aus zwei gängigen Baustählen, einem unlegierten Baustahl S355J2+N und einem Feinkornbaustahl S690QL, erfasst und durch numerische Schweißstruktursimulationen ergänzt. Anschließend erfolgte die Ableitung eines vereinfachten Berechnungsmodells zur weiteren Berücksichtigung in nichtlinearen Tragfähigkeitsberechnungen. Die Erkenntnisse sollen in einen entsprechenden Anwenderleitfaden, herausgegeben durch das Technical Committee 8 der Europäischen Konvention für Stahlbau, einfließen und diesbezüglich als Orientierung einer möglichen zukünftigen Anpassung der Knicklinien in DIN EN 1993-1-1 dienen. Im Projekt wurden die genannten Stähle in zwei typischen Dickenkombinationen von 25/15 mm und 20/10 mm (Gurt- und Stegbleche) zu Großprobekörpern „I-Träger“ unter industrienahen Fertigungsbedingungen mittels Metall-Aktivgasschweißen gefügt. Diese erzeugten die typischen Eigenspannungen, die in solchen Trägern nach der Fertigung vorliegen. Während des Schweißens wurden die Temperaturfelder durch Thermoelemente aufgezeichnet. Die Eigenspannungen wurden nach dem Schweißen experimentell durch eine Kombination aus mechanischem Zerlegen (Zerlegemethode) und anschließender mobiler Röntgendiffraktometrie (XRD) festgestellt. Der Einfluss der industriell üblichen Brennschnittkantenvorbereitung der Bleche auf die finalen Eigenspannungszustände wurde experimentell zusätzlich an kleinmaßstäblichen Proben untersucht. Metallographische Analysen (Schliffbilder und Härtemessungen) komplettierten das experimentelle Programm der FE 2 (BAM, Berlin). Die Ergebnisse zeigten, dass beim mechanischen Zerlegen bereits ein Großteil der Eigenspannungen herausgelöst wurde. Eine Aussage zu den nahtnahen Zugeigenspannungen war allerdings erst durch die Überlagerung mit der XRD möglich. Dabei zeigte der S690QL überwiegend ein besseres Verhalten als der S355J2+N, welches sich unter anderem in abgesenkten Zugeigenspannungen im Verhältnis zur jeweiligen Fließgrenze äußerte. Die maximalen Eigenspannungen wurden dabei zumeist in der Wärmeeinflusszone (WEZ) der Schweißnaht gemessen, unabhängig von der eingebrachten Streckenenergie oder der Festigkeit des Grundwerkstoffs. Die baupraktische Annahme, dass die maximalen Eigenspannungen in Höhe der Fließgrenze vorliegen können, wurde nur in Einzelfällen und nur für den S355J2+N bestätigt. Die experimentellen Ergebnisse zeigten für die Druckeigenspannungen ebenfalls reduzierte relative Eigenspannungswerte des S690QL. Dies zeigt die notwendige weitere Optimierung bei der Wahl der Bewertungsansätze für Eigenspannungen auf die Tragfähigkeit. Die erzeugten Messwerte dienten im weiteren Verlauf als Eingangswerte für die Modellentwicklung und die numerischen Simulationen an I-Trägern durch die FE 1 (LSH, Cottbus). Die numerischen Schweißsimulationen erfolgten in Simufact.Welding® für die Simulationsmodelle mit „klassischem“ Schweißsimulationsansatz sowie in Ansys® für vereinfachte Simulationen und Näherungsansätze. Die Modelle lieferten insgesamt vergleichbare Ergebnisse für die Längseigenspannungen mit teils jedoch erheblichen Unterschieden in den Rechenzeiten. Durch eine angepasste Vernetzung konnte die Rechenzeit in allen Fällen deutlich reduziert werden. Aufgrund der verwendeten Bauteilgrößen ist die Anwendung der Modellierung mit Volumenelementen allerdings meistens nicht praktikabel. Für typische Trägerschweißungen bieten stattdessen Querschnittsmodelle mit der Annahme eines verallgemeinerten ebenen Verzerrungszustands eine mögliche Alternative. Der Abgleich der Ergebnisse mit den Experimenten lieferte zusammenfassend überwiegend gute bis befriedigende Übereinstimmungen. Die experimentell festgestellten Tendenzen wurden dabei in allen Fällen richtig vorhergesagt. Eine umfassende Bewertung der erzielbaren Genauigkeiten war bisher nicht möglich. Dies lag einerseits daran, dass die Datendichte der mit der durch die Zerlegung gewonnen Ergebnisse gering war. Anderseits lieferten die überlagerten Ergebnisse mit der XRD in Teilen, insbesondere in den interessierenden Druckbereichen, widersprüchliche Aussagen zum Eigenspannungseinfluss, was bisher nicht abschließend geklärt werden konnte. Darüber hinaus entstanden etwaige Abweichungen in den Simulationen auch durch die zugrunde gelegten Materialdaten selbst. Diese entsprachen Standarddatensätzen aus Materialbibliotheken. Die Skalierung dieser erfolgte gleichmäßig über den gesamten Temperaturbereich. Insbesondere für den S690QL existierten zu wenige belastbare Materialkennwerte. Entsprechende Versuche konnten im Rahmen dieses Vorhabens nicht mit durchgeführt werden. Dennoch konnten hinsichtlich eines vereinfachten Berechnungsvorgehens zur Berücksichtigung der Schweißeigenspannungen in Tragfähigkeitsberechnungen einige wichtige Erkenntnisse gewonnen werden. Auf Basis der in den numerischen Schweißsimulationsmodellen ermittelten plastischen Dehnungsmuster, auch „Eigenspannungsquellen“, wurde eine vereinfachte Simulationsvorgehensweise vorgeschlagen und verifiziert. Die dabei eingeführten Vereinfachungen wurden im Hinblick auf die Berechnung ausschließlich der plastischen Längsdehnungen bzw. der Längseigenspannungen gewählt. Die Anwendbarkeit ist daher auf ausreichend lange Schweißträger mit Längsnähten beschränkt. Einige Modellmodifikationen zur weiteren Vereinfachung bzw. Modellimplementierung in die strukturmechanische Berechnung an großen Komponenten wurden vorgestellt. Abschließend erfolgt die Einstufung in eine mögliche Knicklinie auf Basis eines mittels GMNIA (geometrisch und materiell nichtlineare Analyse mit Imperfektionen) Berechnungen simulierten Streubands der Tragfähigkeiten mittels Abaqus® und Ansys®. Die anfängliche Hypothese einer günstigeren Knicklinie eines S690QL im Vergleich zum S355J2+N wurde dabei rechnerisch bestätigt. Der experimentelle Nachweis mittels entsprechender Trägerfähigkeitsversuche ist allerdings noch ausstehend. KW - Schweißeigenspannungen KW - Numerische Simulation KW - Traglastverhalten KW - I-Träger KW - Hochfeste Stähle PY - 2018 SN - 978-3-946885-32-0 VL - Forschung für die Praxis P 1035 SP - 1 EP - 144 PB - Verlag und Vertriebsgesellschaft mbH CY - Düsseldorf AN - OPUS4-45271 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pasternak, H. A1 - Launert, B. A1 - Kannengießer, Thomas A1 - Rhode, Michael T1 - Advanced residual stress assessment of plate girders through welding simulation N2 - This article provides an impression on potentials in applying nowadays welding simulation tools in construction design. This is carried out exemplary on plate girders from two structural steel grades. The calculated residual stresses are compared with measurements by sectioning method. It has been repeatedly stated that present Eurocode models fail to approximate the residual stresses. Especially for high strength steel (HSS) only limited information is available on realistic occurring residual stresses in typical I-girders. The investigations are aimed to give further guidance on these values. A few proposals on advanced models are discussed. T2 - MBST 2016 - Modern Building Materials, Structures and Techniques CY - Vilnius, Litunia DA - 26.05.2016 KW - Residual stresses KW - Plate girders KW - I-shape sections KW - High-strength steel KW - Welding simulation PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-392177 UR - http://www.sciencedirect.com/science/article/pii/S1877705817305192 SN - 1877-7058 IS - 172 SP - 23 EP - 30 PB - Elsevier CY - Amsterdam, Niederlande AN - OPUS4-39217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -