TY - CONF A1 - Nietzke, Jonathan A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengießer, Thomas T1 - Experimental and numerical characterization of hydrogen diffusion in thick-walled submerged arc welded joint of S420G2+M offshore steel grade T2 - Proceedings of the Fourth International Conference on Metals & Hydrogen N2 - Offshore wind turbines are an important goal in national energy strategies worldwide. Foundation structures are manufactured from submerged arc welded (SAW) plates with thicknesses up to 200 mm. In that connection, high-strength steels like the S420G2+M are more and more applied offering the possibility for increased stability and load-bearing capacity of the foundations. These offshore steel grades can show a susceptibility for delayed hydrogen assisted cold cracking of the weld joints. For that purpose, a minimum waiting time (MWT) of up to 48 h (dependent on applied standards) is recommended before non-destructive testing is allowed and conducted. But this concept is based on older steel grades that have been used for three or more decades. Nowadays, the metallurgical improvements (clean steels, proper rolling, and heat treatment) of base materials and well as welding consumables must be anticipated. Hence, the MWT concept should be critically discussed as it is assumed to be very conservative. For that reason, the focus of this study was to investigate the diffusion behavior in S420G2+M steel and its multi-layer SAW joint. Electrochemical permeation experiments were carried at room temperature. Boundary conditions were anticipated in terms of using different sample thicknesses. From the experimental data, hydrogen diffusion coefficients and absorbed diffusible hydrogen concentrations had been calculated. It was shown that hydrogen diffusion in the base material is increased compared to the weld metal. In addition, the sample thickness had a significant on the calculated diffusion coefficients. The minimum and maximum diffusion coefficients had been used for numerical modelling of the hydrogen diffusion in the welding joint. It became clear that a MWT must be always regarded together with a critical initial diffusible hydrogen concentration for the evaluation of a possible delayed cracking as diffusion times were mostly > 48 h due to the thick plates. T2 - 4th International Conference on Metals and Hydrogen - Steely & Hydrogen 2022 CY - Ghent, Belgium DA - 11.10.2022 KW - Hydrogen KW - Submerged arc welding KW - Diffusion KW - Minimum waiting time KW - Electrochemical permeation PY - 2022 SP - 1 EP - 11 CY - Ghent, Belgium AN - OPUS4-56075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P A1 - Nitsche, A T1 - Hydrogen effect on mechanical properties and cracking of creep‑resistant 9% Cr P92 steel and P91 weld metal JF - Welding in the World N2 - Martensitic 9% Cr steels like P91 and P92 can show an increased susceptibility to delayed hydrogen-assisted cracking. The focus of this study was the microstructure and heat treatment efect on the mechanical properties of P92 base material and P91 multi-layer weld metal in both as-welded and post weld heat treated (PWHT) condition. Tensile tests with hydrogen free reference samples and electrochemically hydrogen charged samples were carried out; the mechanical properties were assessed and supported by detailed fractographic analysis. Finally, a hydrogen and microstructure-dependent fracture criterion is established. All investigated microstructures showed a hydrogen-infuenced degradation of the mechanical properties compared to the hydrogen-free reference samples. The as-welded martensitic P91 weld metal had the highest degree of degradation in the presence of hydrogen. The P91 PWHT weld metal and the P92 base material had comparable properties. From that point of view, a signifcantly increased risk for hydrogen-assisted cold cracking during welding fabrication of P91 weld joints must be considered before any heat treatment is conducted. T2 - IIW Annual Assembly, Meeting of Commission IX-C CY - Tokyo, Japan DA - 16.07.2022 KW - Creep-resisting materials KW - Welding KW - Hydrogen assisted cracking KW - Hydrogen embrittlement KW - Mechanical properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564070 DO - https://doi.org/10.1007/s40194-022-01410-5 SN - 0043-2288 SP - 1 EP - 12 PB - Springer Nature CY - Basel (CH) AN - OPUS4-56407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Richter, Tim T1 - Hydrogen diffusion and desorption characteristics of a CoCrFeMnNi high entropy and a CoCrNi medium entropy alloy T2 - Proceedings of the Fourth International Conference on Metals & Hydrogen N2 - High-entropy alloys (HEAs) are innovative high-performance materials that have attracted more and more research attention. HEAs are characterized by a solid solution of typically five equiatomic metallic elements. In addition, medium-entropy alloys (MEA, with three elements) are of interest and become more and more important. Depending on the alloy concept, HEAs and MEAs show exceptional mechanical properties, especially high-strength and ductility combinations at both cryogenic and elevated temperatures combined with excellent corrosion resistance. Future structural HEA/MEA components can be exposed to potential applications with hydrogen containing environments like high-temperature water in pressurized nuclear reactors or aerospace structures. Other potential applications could be in materials for vessel walls in the field of cryogenic and high-pressure hydrogen storage. So far, the susceptibility of HEAs/MEAs to hydrogen assisted cracking (if any) and the hydrogen diffusion is not investigated in detail yet and can limit or extend possible applications of HEA/MEA as structural materials. In our work, we focused on the hydrogen absorption, diffusion, and distribution in a HEA (CoCrFeMnNi the original Cantor-alloy) and a MEA (CoCrNi). Cathodic hydrogen charging was carried out for the hydrogen ingress, and thermal desorption analysis (TDA) revealed complex hydrogen trapping in both alloy types up to 300 °C. The absorbed total hydrogen concentrations were > 100 ppm for the HEA and > 40 ppm for MEA. In addition, the assessment of the peak deconvolution is not trivial and must consider both experimental and microstructure influences. T2 - 4th International Conference on Metals and Hydrogen - Steely & Hydrogen 2022 CY - Ghent, Belgium DA - 11.10.2022 KW - Hydrogen KW - High-entropy alloy KW - Multiple principal element alloy KW - Thermal desorption analysis KW - Diffusion PY - 2022 SP - 1 EP - 11 CY - Ghent, Belgium AN - OPUS4-56076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Mente, Tobias A1 - Richter, Tim A1 - Kannengießer, Thomas T1 - Characterization of Hydrogen Diffusion in Offshore Steel S420G2+M Multi-layer Submerged Arc Welded Joint JF - Journal of Materials Engineering and Performance N2 - As onshore installation capacity is limited, the increase in the number of offshore wind turbines (OWT) is a major goal. In that connection, the OWTs continuously increase in size and weight and demand adequate foundations concepts like monopiles or tripods. These components are typically manufactured from welded mild steel plates with thickness up to 200 mm. The predominant welding technique is submerged arc welding (SAW). In accordance with the standards, the occurrence of hydrogen-assisted cracking is anticipated by either a minimum waiting time (MWT, before non-destructive testing of the welded joint is allowed) at ambient or a hydrogen removal heat treatment (HRHT) at elevated temperatures. The effectiveness of both can be estimated by calculation of the diffusion time, i.e., diffusion coefficients. In this study, these coefficients are obtained for the first time for a thick-walled S420G2+M offshore steel grade and its multi-layer SAW joint. The electrochemical permeation technique at ambient temperature is used for the determination of diffusion coefficients for both the base material and the weld metal. The coefficients are within a range of 1025 to 1024 mm2/s (whereas the weld metal had the lowest) and are used for an analytical and numerical calculation of the hydrogen diffusion and the related MWT. The results showed that long MWT can occur, which would be necessary to significantly decrease the hydrogen concentration. Weld metal diffusion coefficients at elevated temperatures were calculated from hydrogen desorption experiments by carrier gas hot extraction. They are within a range of 1023 mm2/s and used for the characterization of a HRHT dwell-time. The analytical calculation shows the same tendency of long necessary times also at elevated temperatures. That means the necessary time is strongly influenced by the considered plate thickness and the estimation of any MWT/HRHT via diffusion coefficients should be critically discussed. T2 - European Congress and Exhibition on Advanced Materials and Process - Euromat 2021 CY - Online meeting DA - 13.09.2021 KW - Thick-walled KW - Hydrogen diffusion KW - Offshore KW - Steel KW - Submerged arc welding PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544127 DO - https://doi.org/10.1007/s11665-022-06679-7 SN - 1059-9495 SP - 1 EP - 13 PB - Springer Nature AN - OPUS4-54412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Czeskleba, Denis A1 - Kannengießer, Thomas T1 - Untersuchung von Spannungsrelaxationsrissmechanismen mittels Simulation einachsiger Spannungszustände in der Grobkornzone von UP-geschweißtem CrMoV-Stahl T2 - DVS Berichte 382: DVS CONGRESS 2022 Große Schweißtechnische Tagung DVS CAMPUS N2 - Druckbehälter mit großen Wandstärken (250+ mm) aus hochwarmfesten, niedriglegierten Stählen werden hauptsächlich Mehrdraht-Unterpulver-(UP) geschweißt. Der damit verbundene hohe Energieeintrag führt unter anderem zu hohen lokalen Schweißeigenspannungen, welche bei unsachgemäßer Prozessführung der notwendigen Wärmenachbehandlung (PWHT) zu Spannungsrelaxationsrissen (SRR) führen. In den Bewertungskriterien zur Spannungsrelaxationsrissanfälligkeit finden weder die, mit klassischen, freischrumpfenden Schweißversuchen nicht abbildbaren, erhöhten Eigenspannungen aus der Schrumpfbehinderung der Bauteilsteifigkeit Beachtung, noch die damit einhergehenden metallurgischen Effekte wie bspw. das Ausscheidungswachstum während der PWHT und damit einhergehende Härteunterschiede an den Korngrenzen bzw. die vorzeitige Alterung durch Bildung differenter Sonderkarbide. Die Aufheizrate des PWHT als Einflussfaktor für die SRR-Bildung bleibt derzeit ebenfalls unbeachtet. Daher wurde eine Versuchsmethodik entwickelt, die eine mögliche SRR-Anfälligkeit durch die Kopplung von thermischer und mechanischer Beanspruchung untersucht. Dazu wurden Proben mit unterschiedlichen Gefügen thermisch simuliert und während des PHWT repräsentativ mit sehr hohen Lasten/Eigenspannungen mechanisch beansprucht. Dazu wurde an Kleinzugproben für das as-welded UP-Schweißgut und die thermisch simulierte GKZ eines 13CrMoV9-10 die Dehnung des Prüfbereichs bei variablen Querspannungen und Aufheizraten gemessen. Diese aufheizraten- und gefügeabhängige Längenänderung der Probe wurde durch mathematische Prozeduren analysiert. Damit war es möglich, singuläre werkstoffliche Effekte auf μm-Ebene (Ausscheidungswachstum) als summarische Längen- bzw. Volumenänderung per klassischer Kurvendiskussion zu beschreiben. Die erste und zweite Ableitung zeigten eine ausscheidungsabhängige Härtezunahme, welche von der Spannung und Aufheizrate im geringen Maß linear abhängig war. Gleichzeitig sind Volumenänderungen bei Bildung und Wachstum differenter Sonderkarbide bekannt, welche zusammen mit gefügespezifischen Untersuchungen und der neuen Versuchsmethodik zu einer verbesserten Beurteilung der SRR-Anfälligkeit von geschweißten CrMoV-Stählen beitragen sollen. Prinzipiell ist die vorgestellte Methodik jedoch werkstoff- und zustandsoffen, d.h. sowohl für Grundwerkstoff e als auch definierte Wärmebehandlungsbedingungen geeignet. Dies ermöglicht erstmals die Schaffung einer Transfergröße zwischen Labor und realen Schweißungen, unter Beibehaltung der Bauteilsteifigkeit, d.h. vereinfachte, aber realistische Eigenspannungsabbildung als Grundlage für weitergehende gefügespezifische metallurgische Effekte während des PWHT. T2 - DVS Congress 2022 CY - Koblenz, Germany DA - 19.09.2022 KW - UP-Schweißen KW - Spannungsrelaxationsriss KW - Wärmenachbehandlung KW - Ersatzgeometrie KW - Prüfverfahren PY - 2022 SN - 978-3-96144-190-7 VL - 382 SP - 69 EP - 75 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-55946 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -