TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Czeskleba, Denis A1 - Brackrock, Daniel A1 - Kannengießer, Thomas T1 - Bauteilversuch zur Bewertung der wasserstoffunterstützten Rissanfälligkeit geschweißter, dickwandiger Offshore Gründungsstrukturen N2 - Offshore-Windenergieanlagen erfordern Gründungskonzepte aus unterpulver-(UP-)geschweißten Dickblechen (bspw. der Güte S420ML). Während der Schweißfertigung kann eine zeitverzögerte wasserstoffunterstützte Kaltrissbildung auftreten, deren Bewertung aufgrund der Bauteilgröße von Offshore-Strukturen sehr komplex ist. Deswegen wurde eine bauteilähnliche Geometrie (Mock-Up) entwickelt, um reale Steifigkeitsverhältnisse auf den Labormaßstab zu übertragen. Zusätzliche Versteifungen simulieren die Wirkung einer Einspannung bzw. Schrumpfbehinderung der Schweißnaht. Über die Verwendung von Schweißpulvern mit definierter Feuchte wurden zudem ein Extremszenario der Wasserstoffaufnahme simuliert. Entsprechend der vorgegebenen Mindestwartezeit für die ZfP von bis zu 48 h wurde die Schweißnaht zerstörungsfrei mit Phased-Array-Ultraschall-Prüfung (PAUT) geprüft und die Eigenspannungen über Röntgendiffraktometrie (XRD) bestimmt. Zusätzlich wurde die Wasserstoffverteilung in der Schweißverbindung numerisch simuliert. Außer zulässigen Defekten (wie Poren), wurde keine verzögerte Kaltrissbildung in den Mock-Ups festgestellt, was auf hohe Rissbeständigkeit hindeutet. T2 - Tagung Werkstoffprüfung 2023 CY - Berlin, Germany DA - 23.11.2023 KW - Kaltrissbildung KW - Wasserstoff KW - Offshore KW - Bauteilversuch KW - Imperfektion PY - 2023 AN - OPUS4-58907 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Czeskleba, Denis A1 - Brackrock, Daniel A1 - Kannengießer, Thomas T1 - Bauteilversuch zur Bewertung der wasserstoffunterstützten Rissanfälligkeit geschweißter, dickwandiger Offshore-Gründungsstrukturen T2 - Tagung Werkstoffprüfung 2023 N2 - Offshore-Windenergieanlagen erfordern Gründungskonzepte aus unterpulver-(UP-)geschweißten Dickblechen (bspw. der Güte S420ML). Während der Schweißfertigung kann eine zeitverzögerte wasserstoffunterstützte Kaltrissbildung auftreten, deren Bewertung aufgrund der Bauteilgröße von Offshore-Strukturen sehr komplex ist. Deswegen wurde eine bauteilähnliche Geometrie (Mock-Up) entwickelt, um reale Steifigkeitsverhältnisse auf den Labormaßstab zu übertragen. Zusätzliche Versteifungen simulieren die Wirkung einer Einspannung bzw. Schrumpfbehinderung der Schweißnaht. Über die Verwendung von Schweißpulvern mit definierter Feuchte wurden zudem ein Extremszenario der Wasserstoffaufnahme simuliert. Entsprechend der vorgegebenen Mindestwartezeit für die ZfP von bis zu 48 h wurde die Schweißnaht zerstörungsfrei mit Phased-Array-Ultraschall-Prüfung (PAUT) geprüft und die Eigenspannungen über Röntgendiffraktometrie (XRD) bestimmt. Zusätzlich wurde die Wasserstoffverteilung in der Schweißverbindung numerisch simuliert. Außer zulässigen Defekten (wie Poren), wurde keine verzögerte Kaltrissbildung in den Mock-Ups festgestellt, was auf hohe Rissbeständigkeit hindeutet. T2 - Tagung Werkstoffprüfung 2023 CY - Berlin, Germany DA - 23.11.2023 KW - Kaltrissbildung KW - Wasserstoff KW - Offshore KW - Schweißen KW - Bauteiltest PY - 2023 DO - https://doi.org/10.48447/WP-2023-219 SP - 316 EP - 321 CY - Berlin AN - OPUS4-58908 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Czeskleba, Denis A1 - Liepold, Phillipp A1 - Mente, Tobias A1 - Kannengießer, Thomas T1 - Bewertung und Vermeidung von schweißverarbeitungsbedingten Rissen in hochfesten Baustählen N2 - Die vorliegende Präsentation fasst die Ergebnisse von drei laufenden bzw. beendeten AiF/IGF-Projekten zusammen, die über die Forschungsvereinigung Stahlanwendung FOSTA e.V. an der BAM bearbeitet wurden zum Thema: Bewertung und Vermeidung von schweißverarbeitungsbedingten Rissen in hochfesten Baustählen. T2 - FOSTA Tagung: Hochfester Stahl im Stahl und Anlagenbau CY - Essen, Germany DA - 16.05.2023 KW - Studie KW - Schweißen KW - Hochfester Stahl KW - Riss KW - Forschung PY - 2023 AN - OPUS4-57517 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schröpfer, Dirk T1 - Charakterisierung der WIG und FSW-Mischverbindungen neuartiger Multielement-Legierungen mit einem austenitischen Stahl T2 - DVS Berichte 389: DVS CONGRESS 2023 Große Schweißtechnische Tagung DVS CAMPUS N2 - Multielement-Legierungen (MPEA - Multiple Principal Element Alloys), gemeinhin und partiell fälschlicherweise auch als Hochentropielegierungen bezeichnet) stellen eine neue Klasse von Werkstoffen dar, die aus mindestens drei Legierungselementen mit jeweils 5 bis 35 Atom-% bestehen. Somit unterscheidet sich dieses Legierungskonzept fundamental von konventionellen Werkstoffen wie Stahl oder Nickellegierungen. Hierzu werden die Legierungselemente gezielt ausgewählt und die Mikrostrukturen ein- und zum Teil auch mehrphasig eingestellt. Das Ziel ist dabei, hochinnovative MPEA mit individuell einstellbaren Eigenschaften für die industrielle Anwendung zu identifizieren. Dabei werden insbesondere Zielkonflikte, wie bspw. der Trade-off zwischen Festigkeit und Duktilität bei konventionellen Stählen, überwunden. Insbesondere die hohe mechanische Festigkeit bei höchster Korrosionsbeständigkeit sind bei bestimmten Legierungssystemen von hohem Interesse. Hier kann u.a. die Substitution klassischer hochlegierter Stähle oder Ni-Basislegierungen perspektivisch erfolgen. In den letzten 20 Jahren lag der Fokus jedoch auf der reinen Materialsynthese. Mit der Zunahme verfügbarer Werkstoffquantitäten, stehen Verarbeitungsfragen, wie werkstoff- und beanspruchungsgerechte Füge- bzw. Schweißverfahren jetzt im Mittelpunkt. Der Schweißeignung von MPEA wurde bisher nur äußert wenig Aufmerksamkeit zuteil. Erfahrungen zu Mischverbindungen (DMWs - Dissimilar Metal Welds) fehlen dabei vollständig, sind jedoch essenziell für die Anwendung dieser Werkstoffe in Verbindung mit konventionellen Werkstoffen. Die vorliegende Studie präsentiert erstmals im deutschen Sprachraum, die umfassenden experimentellen Ergebnisse zur Schweißeignung von MPEA-Mischverbindungen und der resultierenden Mikrostruktur. Dazu wurden zwei äquiatomare MPEAs in Form einer Co20Cr20Fe20Mn20Ni20 (Hochentropie-) und Co33.3Cr33.3Ni33.3 (Mediumentropielegierung) mittels WIG und Rührreibschweißen mit einem konventionellen, korrosionsbeständigem Cr-Ni-Stahl AISI 304 (1.4301 bzw. X5CrNi18-10) gefügt. Die erstmals untersuchten DMWs resultierten dabei in sehr interessanten Mikrostrukturen, mechanisch-technologische Eigenschaften wurden durch instrumentierte Zugversuche gewonnen, die gleichzeitig der Ermittlung der lokalen Verformung im Schweißnahtbereich dienten (durch Verwendung der berührungslosen DIC-Digital Image Correlation-Technik). Dabei zeigt sich für beide Schweißverfahren eine Erweichung in der Wärmeeinflusszone (WEZ) der MPEAs sowie eine geringfügig verminderte Zugfestigkeit, bei einer deutlichen Abnahme der Bruchdehnung. Durch die Experimente konnte der prinzipielle Nachweis der Schweißeignung der MPEAs für DMWs mit konventionellen Werkstoffen erbracht werden, die auch eine dementsprechende mechanische Beanspruchbarkeit ermöglichen. Dies ermöglicht weitere Betrachtungen zur Anwendung dieser innovativen Werkstoffe. T2 - DVS Congress 2023 CY - Essen, Germany DA - 11.09.2023 KW - Schweißeignung KW - Mischverbindung KW - Hochentropielegierung KW - Multielement-Legierung KW - FSW KW - WIG PY - 2023 SN - 978-3-96144-230-0 VL - 389 SP - 615 EP - 623 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-58352 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Brackrock, Daniel A1 - Czeskleba, Denis A1 - Kannengießer, Thomas T1 - Component test for the assessment of delayed hydrogen-assisted cracking in thick-walled SAW joints for offshore applications JF - Welding in the World N2 - Offshore wind turbines continuously increase in size and weight and demand adequate offshore foundations concepts like monopiles, tripods, or jackets. These components are typically constructed using submerged arc welding (SAW) with high-strength thick steel plates like the S420ML. During welding, the occurrence of delayed hydrogen-assisted cracking (HAC) must be anticipated. HAC is a critical combination of the local hydrogen concentration within a susceptible microstructure under certain mechanical load, i.e., the occurring (welding) residual stresses. The welding sequence of the thick-walled plates complicates the residual stress distribution due to the necessary repeated thermal cycling, i.e., welding seam/layer deposition to fill the joint. For that purpose, SAW with two-wire-technique was used to weld a specially designed and prototype-like mock-up of a real component with a thickness of 50 mm, filled with over 20 passes and a seam length of 1000 mm. Additional welded stiffeners simulated the effect of a high restraint, to achieve critical HAC conditions. The necessity of a minimum waiting time (MWT) before the NDT can be conducted (to exclude HAC) was critically verified by the application of ultrasonic testing of the welded joint at different time-steps of the NDT of up to 48 h after the completion welding. The residual stresses were determined by a robot XRD goniometer. Tensile residual stresses up to the yield limit are found both in the weld metal and in the heat-affected zone. Numerical modeling allowed the qualitative estimation of the hydrogen diffusion in the weld. No noticeable HAC occurrence was identified and confirms the high cracking resistance of the investigated material. Finally, the applicability of the MWT concept should be critically discussed. KW - Hydrogen KW - Cold cracking KW - Minimum Waiting Time KW - Offshore steel grade KW - Component test PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591981 DO - https://doi.org/10.1007/s40194-023-01658-5 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-59198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Brackrock, Daniel A1 - Kannengießer, Thomas T1 - Component test for the assessment of hydrogen assisted cracking susceptibility of thick-walled submerged arc welded offshore steels N2 - Offshore wind turbines (OWT) are a key factor of the sustainable energy generation of tomorrow. The continuously increasing installation depths and weight of the OWTs require suitable foundation concepts like monopiles or tripods. Typically, mild steels like the S420ML are used with plate thicknesses up to several hundreds of mm causing high restraints in the weld joints. Due to the large plate thickness, submerged arc welding (SAW) with multiple wires is the state-of-the-art welding procedure. As a result of the very high stiffness of the construction, a certain susceptibility for time-delayed hydrogen-assisted cracking (HAC) may occur. The evaluation of crack susceptibility is very complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry was developed to transfer the real stiffness conditions to laboratory (i.e., workshop) scale. The investigated mock-up, weighing 350 kg, comprised heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated via the use of welding fluxes in dry (HD < 5 ml/100g Fe) and moisture condition (HD > 15 ml/100g Fe). The residual stresses were determined by a robot X-ray diffractometer. Areas of critical tensile residual stress (at the level of the yield strength) were found in the weld metal and heat affected zone. To identify possible delayed cracking, the welds were tested by phased array ultrasonic testing (PAUT) after 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and welding parameters. T2 - AJP 2023: 3rd International Conference on Advanced Joining Processes 2023 CY - Braga, Portugal DA - 19.10.2023 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Component test KW - NDT KW - Waiting time PY - 2023 AN - OPUS4-58672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Steurer, Florian T1 - Diffusion in high-pressure hydrogen charged multi-principal element alloys CoCrFeMnNi and CoCrNi vs. AISI 316L N2 - Multi-principal element alloys (MPEAs) are innovative materials that have attracted extensive research attention within the last decade. MPEAs are characterized by a solid solution of equiatomic metallic elements. Depending on the number of elements, they are also referred as high entropy alloys (HEAs with n ≥ 4 elements like CoCrFeMnNi) and medium-entropy alloys (MEA with n = 3 elements CoCrNi). Depending on the alloy concept, MPEAs show exceptional properties in terms of mechanical performance or corrosion resistance at extreme environments. In that connection, hydrogen and its challenges for the most metallic materials gets more and more important. MPEAs are candidate materials for the substitution of conventional materials like austenitic stainless steels e.g., at very high-pressure up to 1000 bar. Those pressures are typically reached in valves or compressors for refueling of tanks with operational pressure of 700 bar. So far, the susceptibility of HEA/MEAs to hydrogen assisted cracking (if any) and the especially the underlying hydrogen uptake and diffusion was not within the scientific scope and not investigated in detail yet. For that reason, we focused on the hydrogen absorption the characterization of the hydrogen diffusion and trapping at elevated temperatures in a CoCrFeMnNi-HEA (each element with 20 at.-%) and CoCrNi-MEA, each element with 33.3 at.-%). As reference grade, the commercially available austenitic stainless steel AISI 316L was investigated. High-pressure hydrogen charging was conducted at different pressures in autoclave environment with maximum value of 1,000 bar. Thermal desorption analysis (TDA) via carrier gas hot extraction with coupled mass spectrometry was used with a max. heating rate of 0.5 K/s up to 650 °C. The measured desorption spectra of the different samples were deconvoluted into a defined number of individual peaks. The individually calculated peak temperatures allowed the definition of activation energies for predominant trap sites in the respective materials as well as the percentage share of the totally absorbed hydrogen concentration. The results present for the first time the complex interaction of both MPEAs and high-pressure hydrogen charging. A deconvolution of four peaks was selected and a main desorption peak was identified the dominant hydrogen trap containing the biggest share of the absorbed hydrogen concentration. The chemical composition an austenitic phase of both MPEAs is responsible for delayed hydrogen diffusion and strong, but mostly reversible, trapping. The comparison with the 316L samples showed significantly higher activation energies in the MPEAs, whereas hydrogen was also trapped at very high extraction temperatures. The absorbed maximum hydrogen concentration at 1,000 bar was 130 ppm for the CoCrFeMnNi-HEA, 50 ppm for the CoCrNi-MEA and 80 ppm for the 316L. It is interesting that the CoCrFeMnNi-HEA has obviously a way higher trapping capability compared to the conventional austenitic 316L, which could be a major advantage in terms of resistance to hydrogen assisted cracking. T2 - 47th MPA-Seminar CY - Stuttgart, Germany DA - 10.10.2023 KW - High-entropy alloy KW - Hydrogen KW - Diffusion KW - Thermal desorption analysis KW - Multiple-principal element alloy PY - 2023 AN - OPUS4-58675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schroepfer, Dirk A1 - Michael, Thomas T1 - Dissimilar metal TIG weld joints of multiple principal element alloys (MPEA) to austenitic steel 304 N2 - Multi-element alloys (MPEA - Multiple Principal Element Alloys) represent a new class of materials consisting of at least three alloying elements, each with 5 to 35 atomic %. This material class includes high-entropy alloys (HEA, with n ≥ 4 elements). The underlying alloying concept differs fundamentally from conventional materials such as the Fe-based steel. For this purpose, the alloying elements are specifically selected, and the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. The aim is to identify highly innovative MPEA with individually adjustable properties for industrial applications. In the last 20 years, however, the focus has been on pure material synthesis. With the increase in available material quantities, the focus is on processing issues such as joining and welding processes. In that connection, the weldability of MPEAs has received very little attention so far. Experience with dissimilar metal welds (DMWs) is completely lacking but is essential for the application of these materials if joint to conventional materials. This study presents selected experimental results on the weldability of MPEA-DMWs and the resulting microstructures. For this purpose, the equiatomic CoCrFeMnNi (HEA) was investigated in cold-rolled (CR) and heat-treated (HT) condition and joined by tungsten inert gas (TIG) welding to an austenitic stainless steel 304. The DMWs showed defect-free conditions (no lack of fusion, cracks and so on), whereas the cold-rolling increases the microhardness. The global mechanical properties were obtained by instrumented tensile tests of cross-weld samples and showed sufficient yield and tensile strength comparable to that of the individual base materials (BM). The local strain conditions were determined by digital image correlation and showed the highest local strains to occur in the intermixed weld metal. Indeed, the preferred fracture location of the cross-weld tensile samples was in the weld metal. Finally, the experiments proofed the weldability of the MPEAs to conventional 304. This enables targeted further considerations for example as structural materials. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - Multi-principal element alloys KW - TIG welding KW - Dissimilar metal weld (DMW) joint KW - Microstructure KW - Mechanical properties KW - Digital Image Correlation (DIC) PY - 2023 AN - OPUS4-58222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drexler, A.-K. A1 - Konert, Florian A1 - Nietzke, Jonathan A1 - Hodžić, E. A1 - Pastore, S. A1 - Domitner, J. A1 - Rhode, Michael A1 - Sommitsch, C. A1 - Böllinghaus, Thomas T1 - Effect of Tensile Loading and Temperature on the Hydrogen Solubility of Steels at High Gas Pressure JF - Steel Research International N2 - The hydrogen solubility in ferritic and martensitic steels is affected by hydrostatic stress, pressure, and temperature. In general, compressive stresses decrease but tensile stresses increase the hydrogen solubility. This important aspect must be considered when qualifying materials for high‐pressure hydrogen applications (e.g., for pipelines or tanks) by using autoclave systems. In this work, a pressure equivalent for compensating the effect of compressive stresses on the hydrogen solubility inside of closed autoclaves is proposed to achieve solubilities that are equivalent to those in pipelines and tanks subjected to tensile stresses. Moreover, it is shown that the temperature effect becomes critical at low temperatures (e.g., under cryogenic conditions for storing liquid hydrogen). Trapping of hydrogen in the microstructure can increase the hydrogen solubility with decreasing temperature, having a solubility minimum at about room temperature. To demonstrate this effect, the generalized law of the hydrogen solubility is parameterized for different steels using measured contents of gaseous hydrogen. The constant parameter sets are verified and critically discussed with respect to the high‐pressure hydrogen experiments. KW - Hydrogen KW - Solubility KW - Temperature KW - Tensile loading KW - Analytical calculation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586701 DO - https://doi.org/10.1002/srin.202300493 SN - 1611-3683 SP - 1 EP - 9 PB - Wiley AN - OPUS4-58670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Einfluss unterschiedlicher Mikrolegierungsrouten eines S690QL auf das Ausscheidungsverhalten in der Wärmeeinflusszone T2 - Tagungsband, 5. Symposium Materialtechnik. Fortschrittsberichte der Materialforschung und Werkstofftechnik N2 - Mikrolegierungselementen, wie Nb und Ti sind für eine signifikante Festigkeitssteigerung von vergüteten, hochfesten Feinkornbaustählen mit einer Nominalstreckgrenze ≥ 690 MPa unerlässlich. Normvorgaben zur chemischen Zusammensetzung dieser Stähle geben zur Erzielung der vorgeschriebenen Eigenschaften dabei oft nur Grenzgehalte für die Hersteller vor. Die Wirkung der Mikrolegierungselemente bzw. ihrer Karbide und/oder Nitride ist teilweise komplett konträr, insbesondere bei Auflösung und Wiederausscheidung in der WEZ bei identischem Schweißzusatz. Somit wird eine adäquate Vorhersage der Chargenabhängigkeit hinsichtlich der Schweißeignung und des Tragverhaltens der Schweißverbindung erschwert. Eine unerwünschte Eigenschaft ist dabei die Erweichung der WEZ, wie auch u.U. der gegenteilige Effekt der Aufhärtung. Vor diesem Hintergrund werden im Rahmen eines DFG-Vorhabens systematisch Mikrolegierungs-routen mit variierenden Ti- und Nb-Gehalten des hochfesten und vergüteten Feinkornbaustahls S690QL untersucht. Dazu wird das MAG-Schweißen mit modifizierten Sprühlichtbogen verwendet, welches durch hohe Abschmelzleistung gekennzeichnet ist und schmalere Nahtöffnungswinkel (α = 30°) ermöglicht. An Dreilagen-Schweißungen wird der Effekt der metallurgischen Zusammensetzung in Kombination mit hoher Wärmeeinwirkung auf die Ausbildung einer kritischen WEZ-Gefügezone mit Erweichung und/oder exzessiver Aufhärtung untersucht. Ein besonderes Augenmerk wird auf die Phasenumwandlungen und das Ausscheidungsverhalten im Gefüge der Wärmeeinflusszone gelegt. Neben umfangreichen metallographischen Untersuchungen einzelner WEZ-Bereiche wurden, unter Variation der chemischen Zusammensetzung, thermodynamische Phasenberechnungen mittels Thermo-Calc durchgeführt. Hierdurch wird ein Verständnis zur Phasentransformation und Ausscheidungswachstum und -auflösung während des Schweißens in Abhängigkeit von Temperatur und Abkühlbedingungen geschaffen. Das Ziel ist es, den Einfluss der Wärmeeinwirkung auf die Gefügeausbildung in der WEZ und dessen mechanischer Eigenschaften zu analysieren. Insbesondere wird hier auf die Auswirkung der unterschiedlichen Mikrolegierungskonzepte (Ti oder Nb) geachtet. T2 - 5. Symposium Materialtechnik CY - Clausthal-Zellerfeld, Germany DA - 23.02.2023 KW - WEZ Erweichung KW - Thermodynamische Simulation KW - Mikrolegierungseinfluss KW - Schweißen von hochfesten FKB PY - 2023 SN - 978-3-8440-9105-2 VL - 12 SP - 332 EP - 343 PB - Shaker Verlag AN - OPUS4-58006 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Fügetechnik in Wasserstofftechnologien Ein aktueller Überblick N2 - Der Vortrag gibt einen kurzen Überblick über die Bedeutung der Fügetechnik in Wasserstofftechnologien und über zukünftige Herausforderungen. Fügetechnologien, insbesondere die Schweißtechnik, haben dabei wesentliche Bedeutung für die Umsetzung von technischen Komponenten der Wasserstofftechnologien. Forschungsschwerpunkte ergeben sich insbesondere für die Erzeugung und den Transport des Wasserstoffs. T2 - Vortragsreihe des DVS Bezirksverbandes Mannheim-Ludwigshafen CY - Online meeting DA - 27.04.2023 KW - Wasserstoff KW - Schweißen KW - Studie PY - 2023 AN - OPUS4-57411 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Fügetechnik in Wasserstofftechnologien: Erzeugung, Transport, Speicherung, Nutzung N2 - Der Vortrag gibt einen kurzen Überblick über die Bedeutung der Fügetechnik in Wasserstofftechnologien und über zukünftige FuE-Bereiche. Fügetechnologien haben dabei wesentliche Bedeutung für die Umsetzung von technischen Komponenten der Wasserstofftechnologien. Forschungsschwerpunkte ergeben sich insbesondere für die Erzeugung und den Transport des Wasserstoffs. T2 - Vortragsreihe des DVS Bezirksverbandes Berlin CY - Berlin, Germany DA - 22.02.2023 KW - Wasserstoff KW - Fügetechnik KW - Forschung KW - Review PY - 2023 AN - OPUS4-57040 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Konert, Florian A1 - Sobol, Oded A1 - Böllinghaus, Thomas A1 - Merz, Benjamin T1 - Hollow specimens as simplified approach for testing metallic materials under high pressure hydrogen development and utilization N2 - The hydrogen economy requires large-scale storage and transportation options like long-distance transmission pipelines. The applied materials (typically steels) must be carefully tested under different conditions (pressure, temperature, impact of impurities, etc.) for their suitability and service with hydrogen. In combination with mechanical load, as occurs in every gas network, hydrogen can induce degradation of the mechanical properties and promote finally resulting in embrittlement, i.e., the formation of cracks. The conventional testing procedures consist of autoclaves in which samples are strained under pressurized hydrogen. The test apparatus requires large amounts of hydrogen and thus a high level of safety and costs. In very specific cases, these tests might be replaced by simplified electrochemical charging. However, these test alternatives raise several questions regarding the equivalency of both testing scenarios. In the early 1980’s the idea of a so-called hollow tensile sample raised and was reinitiated 2021 in ISO TC 164 by T. Ogata (NIMS, Japan) and further developed (e.g. by Fraunhofer IWM, Germany). The idea was: the sample itself represents the autoclave instead of charging a sample from outside. For that reason, a hole is drilled through the sample and the inner surface is pressurized by hydrogen gas during the mechanical testing. Indeed, this represents the main advantage as no expensive pressure-resistant autoclave equipment for large H-volumes is necessary, which significantly reduces the safety-related issues and thus the high costs. In the following, we show recent activities at BAM Berlin on adaption of the hollow-specimen technique for slow strain rate testing (SSRT). The current research activities are focussed on macroscopic influences like the sample geometry, minimum necessary dimensions, and microscopic influences e.g., on the surface by the processing method (drill hole quality and geometric precision) as well as the gas pressure effect (mechanical deformation of surface in different media). T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - Hydrogen KW - Hollow tensile specimen KW - High-pressure KW - Mechanical properties KW - Testing PY - 2023 AN - OPUS4-58220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Delgado Arroyo, Diego A1 - Richter, Tim A1 - Schroepfer, Dirk A1 - Boerner, Andreas A1 - Rhode, Michael A1 - Lindner, T. A1 - Preuß, B. A1 - Lampke, T. T1 - Influence of Milling Conditions on AlxCoCrFeNiMoy Multi-Principal-Element Alloys JF - Coatings N2 - Multi-Principal-Element or High-Entropy Alloys (MPEAs/HEAs) have gained increasing interest in the past two decades largely due to their outstanding properties such as superior mechanical strength and corrosion resistance. However, research studies on their processability are still scarce. This work assesses the effect of different machining conditions on the machinability of these novel alloys, with the objective of advancing the introduction of MPEA systems into industrial applications. The present study focuses on the experimental analysis of finish-milling conditions and their effects on the milling process and resulting surface finish of CoCrFeNi, Al0.3CoCrFeNi and Al0.3CoCrFeNiMo0.2 alloys fabricated via Spark Plasma Sintering. Ball-nose-end milling experiments have been carried out various milling parameters such as cutting speed, feed per cutting edge, and ultrasonic assistance. In situ measurements of cutting forces and temperature on the tool edge were performed during the experiments, and surface finish and tool wear were analyzed afterwards. The results exhibited decreasing cutting forces by means of low feed per cutting edge and reduced process temperatures at low cutting speed, with the use of ultrasonic-assisted milling. It was shown that the machinability of these modern alloys through conventional, as well as modern machining methods such as ultrasonic-assisted milling, is viable, and common theories in machining can be transferred to these novel MPEAs. KW - Multi-principal element alloys KW - Finish milling KW - Spark plasma sintering KW - Ultrasonic-assisted milling KW - Microstructure characterization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572990 DO - https://doi.org/10.3390/coatings13030662 VL - 13 IS - 3 SP - 1 EP - 18 PB - MDPI (Multidisciplinary Digital Publishing Institute) CY - Basel (CH) AN - OPUS4-57299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Czeskleba, Denis A1 - Nietzke, Jonathan A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Investigation of stress relief crack susceptibility of CrMoV steels coarse grain HAZ via simulation of uniaxial stress conditions during PWHT JF - Welding in the World N2 - Creep-resistant steels such as the 13CrMoV9-10, used in the construction of thick-walled pressure vessels, are most commonly submerged arc welded (SAW). These steels can develop stress relief cracks (SRC) if the mandatory post weld heat treatment (PWHT) is performed improperly. Current PWHT parameters, such as heating rate and holding time at a specific holding temperature, are based on both empirical experience and conventional free shrinking welding experiments to characterize the SRC-susceptibility of the weld. These cannot adequately depict the higher residual stresses caused by the structurally induced stiffness of the surrounding construction. This study discusses the development of a repeatable, precise, and time-efficient methodology to study the effects of different stress levels and heating rates on the SRC susceptibility of the coarse grain heat-affected zone (CGHAZ). For that purpose, samples were thermically treated to simulate a coarse grain heat-affected zone (CGHAZ) and subsequently exposed to representative levels of stress during the heating phase of a PWHT. The recorded stress and heating rate–dependent strains were mathematically analyzed via curve tracing/calculus to identify interdependent effects. This procedure facilitates the measurement of material characteristics such as carbide growth on grain boundaries at the µm-scale via an integrated value over the entire sample volume. The first and second derivatives show a slight, precipitate-dependent, increase in hardness of the sample, depending on the heating rate and applied stress. This new methodology generates an improved assessment of the SRC susceptibility of SAW microstructures of creep-resistant CrMoV steels. KW - Submerged arc welding KW - Creep-resistant steel KW - Stress relief cracking KW - Component-like test KW - Post weld heat treatment PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576007 DO - https://doi.org/10.1007/s40194-023-01539-x SN - 0043-2288 SP - 1 EP - 9 PB - Springer Nature CY - Basel (CH) AN - OPUS4-57600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Czeskleba, Denis A1 - Kannengießer, Thomas T1 - Large scale hydrogen assisted cracking test for thick walled SAW joints for offshore applications N2 - Offshore wind turbines continuously increase in size and weight and demand adequate offshore foundations concepts like monopiles, tripods or jackets. These components are typically submerged arc welded (SAW) high-strength thick steel plates like the S420ML. During welding, the occurrence of delayed hydrogen assisted cracking (HAC) must be anticipated. HAC is a critical combination of the local hydrogen concentration within a susceptible microstructure under certain mechanical load, i.e., the occurring (welding) residual stresses. The welding sequence of the thick-walled plates complicate the residual stress distribution due to the necessary repeated thermal cycling, i.e., welding seam / layer deposition to fill the joint. For that purpose, SAW with two-wire-technique was used to weld a specially designed and prototype-like mock-up of a real component with a thickness of 50 mm, filled with 22 passes and a seam length of 1,000 mm. Additional welded stiffeners simu-lated the effect of a high restraint, to stimulate critical HAC conditions. The necessity of a minimum waiting time (MWT) before the NDT can be conducted (to exclude HAC) was critically verified by the application of ultrasonic testing of the welded joint at different time-steps of the NDT of 48 h after welding. The residual stresses were determined by a robot XRD goniometer. Tensile residual stresses up to the yield limit are found both in the weld metal and in the heat-affected zone. Numerical modelling allowed the qualitative estimation of the hydrogen diffusion in the weld. A remarkable HAC occurrence was not identified and proves both, a certain resistance of the weld joint to HAC and the (questionable) duration of the MWT. T2 - IIW Annual Assembly, Meeting of Commission II-C CY - Singapore DA - 19.07.2023 KW - Mock-up KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Offshore KW - Steel PY - 2023 AN - OPUS4-57977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schroepfer, Dirk A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim T1 - Local mechanical properties of TIG dissimilar metal welded CoCrFeMnNi high-entropy alloy to austenitic steel AISI 304 N2 - Multiple principal element alloys (MPEA) encompass the well-known high entropy alloys (HEAs). MPEA/HEA represent a new class of materials consisting of at least three alloying elements, each containing 5 to 35 at.-%. This alloying concept thus differs fundamentally from conventional materials such as steel or nickel alloys. For this purpose, the alloying elements are specifically selected, and the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. In particular, conflicting goals, such as the trade-off between strength and ductility in conventional steels, are overcome. In the last 20 years, however, the focus has been on material synthesis. With the increase in available material quantities, the focus is now on pro-cessing issues such as joining and welding processes. The weldability of MPEA has received very little atten-tion so far. Experience with dissimilar metal welds (DMWs) is completely lacking but is essential for the appli-cation of these materials in combination with conventional materials. The present study presents, comprehen-sive experimental results on the weldability of MPEA-DMWs. For that purpose, a Co20Cr20Fe20Mn20Ni20 HEA in cold-rolled and heat-treated condition was joined by means of tungsten inert gas welding (TIG) with the austenitic Cr-Ni steel AISI 304. The DMWs resulted in interesting mechanical properties. They were obtained by instrumented tensile tests as well as the local deformation in the weld area by using digital image correlation (DIC) technique. A significant softening in the heat-affected zone (HAZ) of the MPEAs as well as a slightly reduced tensile strength with a significant decrease of the elongation at fracture were found. The experiments provided proof in principle of the weldability of the MPEAs for DMWs with conventional materials that ensure a corresponding capability for mechanical loading. This allows further considerations on the application of these innovative materials. T2 - IIW Annual Assembly, Meeting of Commission C-II CY - Singapore DA - 18.07.2023 KW - High-entropy alloy KW - Welding KW - Microstructure KW - Mechanical properties KW - Dissimilar metal weld PY - 2023 AN - OPUS4-57978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Schröder, Nina A1 - Kannengießer, Thomas T1 - Microalloying influence on precipitation behavior and mechanical properties of welded high strength structural steels N2 - Microalloying elements, such as Nb and Ti, are essential for the targeted mechanical strength of quenched and tempered, high-strength fine-grained structural steels with a nominal yield strength ≥ 690 MPa. Current specifications for chemical composition only provide upper limits for manufacturers. But even small deviations in the alloying route can have a drastic effect on the mechanical properties. Thus, an adequate prediction of the weldability and the integrity of the welded joint becomes difficult or even impossible due to the varying composition and, hence, the microstructures. Undesirable side effects are the possible softening of the heat-affected zone (HAZ) as well as the opposite effect of hardening. Against this background, different microalloying routes with varying Ti and Nb contents are systematically investigated for the first time on specially designed lab-cast alloys. The basis of each alloy route was the common S690QL in terms of both the chemical composition as well as the heat treatment. To investigate the weldability, three-layer welds were performed using metal active gas welding (MAG) and critical microstructural areas with high softening/hardening were identified. The scope was here on the identification of phase transformations during cooling and on the respective metallurgical precipitation behavior. Isothermal and non-isothermal phase calculations were performed using Thermo-Calc® and showed that the prediction of the non-equilibrium precipitation characteristics during welding is not trivial, especially for this relatively complex chemical composition. The mechanical properties of the welded joints were identified by both Charpy tests (toughness) and tensile tests (strain and strength). During the test, the local straining behavior of the welded joints, was identified using a digital image correlation (DIC) system, see Figure 1. Despite the generally good weldability of the materials, the results show a significant influence of the microalloying route as well as the welding heat input on the different precipitation kinetics. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - High-strength KW - Steel KW - Mechanical properties KW - Welding KW - Thoughness PY - 2023 AN - OPUS4-58221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Buzolin, R.H. A1 - Richter, Tim A1 - Pixner, F. A1 - Rhode, Michael A1 - Schroepfer, Dirk A1 - Enzinger, N. T1 - Microstructure and texture characterisation of friction stir welded CoCrNi and CoCrFeMnNi multi-principle element alloys JF - Materials Today Communications N2 - This work investigates the microstructure formed in friction stir welds of FCC alloys, focused on two multiprincipal alloys: a CoCrFeMnNi high-entropy alloy (HEA) and a CoCrNi medium-entropy alloy (MEA). A commercial stainless steel AISI 304 is used for comparison. The largest nugget was formed in the MEA, while the smallest was formed in the HEA. Grain refinement occurs in the stirred zone in all welds. Discontinuous dynamic recrystallisation is the predominant restoration mechanism during friction stir welding of the three investigated alloys. A sharp decrement in the Σ3 boundary fraction occurs in the stirred zone of the AISI 304 and HEA welds, while comparable values with the base metal are found for the MEA weld. The peak in the maximum index of crystallographic texture is observed on the advancing side of the stirred zone of the AISI 304 weld. A strong <001> θ-fibre texture is formed in the advancing side of the nugget in the AISI 304 from a well-established {123} <634> S-type texture in the base metal. Multiple crystallographic texture components without specific fibres are identified in most regions of the welds, indicating the complex shear path history during friction stir welding. KW - Microstructure KW - Multiple principal element alloy KW - Friction stir welding KW - Electron backscattered diffraction KW - Crystallographic texture PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572987 DO - https://doi.org/10.1016/j.mtcomm.2023.105870 VL - 35 SP - 1 EP - 14 PB - Elsevier Ltd. CY - Amsterdam (NL) AN - OPUS4-57298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Buzolin, R. H. A1 - Richter, Tim A1 - Pixner, F. A1 - Rhode, Michael A1 - Schroepfer, Dirk A1 - Enzinger, N. T1 - Microstructure characterisation of multi-principal element alloys welds produced by electron beam welding JF - Materials and design N2 - This work explores the feasibility of producing bead-on-plate welds of a CrCoNi medium entropy alloy and a CrMnFeCoNi high entropy alloy using electron beam welding. The alloys were welded in two states: one in an as-cold-rolled condition and the other in an annealed condition. In addition, the materials are welded with two different parameters. The FCC microstructure of the welds is investigated using scanning electron microscopy assisted by energy-dispersive X-ray spectroscopy and electron-backscattered diffraction. The impact of the weld on the microstructure is discussed. The heat-affected zone is negligible for the annealed condition of both medium and high entropy alloys since there is no driving force for recrystallisation and the exposure time to high temperature is insufficient for grain coarsening. The texture formed in the fusion zone is also discussed and compared to the texture in the base metal and the heat-affected zone. Although the grain growth along the (100) crystallographic direction is preferential in all cases, the crystallographic texture type differs from each weld. Higher hardness values are measured in the medium entropy alloy’s base metal and fusion zone than in the high entropy alloy. KW - Multi-principal element alloy KW - Electron backscattered diffraction KW - Electron beam welding KW - High-entropy alloy KW - Microstructure characterization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568129 DO - https://doi.org/10.1016/j.matdes.2023.111609 SN - 1873-4197 VL - 225 SP - 1 EP - 14 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-56812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Mikrolegierungseinfluss auf das Ausscheidungsverhalten und die mechanischen Eigenschaften geschweißter hochfester Baustähle T2 - DVS-Berichte N2 - Mikrolegierungselemente, wie Nb und Ti, sind für die signifikante Festigkeitssteigerung von vergüteten, hochfesten Feinkornbaustählen mit einer Nominalstreckgrenze ≥ 690 MPa unerlässlich. Normvorgaben zur chemischen Zusammensetzung geben dabei nur obere Grenzwerte für die Hersteller vor. Weiterhin wirken sich bereits kleine Abweichungen in der Legierungsroute teilweise drastisch auf die mechanischen Eigenschaften aus. Somit wird eine adäquate Vorhersage der Schweißeignung und der Integrität der Schweißverbindung aufgrund der variierenden Mikrogefüge erschwert bis unmöglich. Unerwünschte Nebeneffekte sind die mögliche Erweichung der Wärmeeinflusszone (WEZ) als auch der gegenteilige Effekt der Aufhärtung. Vor diesem Hintergrund werden erstmals systematisch die unterschiedlichen Mikrolegierungsrouten mit variierenden Ti und Nb-Gehalten an Versuchsschmelzen untersucht. Die Stahlgüte S690QL bildet dabei die Grundlage der chemischen Zusammensetzung sowie der entsprechenden Wärmebehandlung. Zur Untersuchung der jeweiligen Schweißeignung wurden Dreilagen-Schweißungen mittels moderner MAG-Hochleistungsschweißprozesse durchgeführt und kritische Gefügebereiche mit hoher Erweichung/Aufhärtung identifiziert. Der Fokus der analytischen Betrachtungen lag hier auf der Identifikation der Phasenumwandlungen beim Abkühlen und auf dem metallurgischen Ausscheidungsverhalten. Zusätzlich wurden isotherme und nicht-isotherme Phasenberechnungen mit der Software Thermo-Calc durchgeführt. Mechanisch-technologische Untersuchungen zur Kerbschlagzähigkeit mittels Kerbschlagbiegeversuchen durchgeführt wurden, bestätigen dabei die Ergebnisse der thermodynamischen Simulation bezüglich des Ausscheidungsverhaltens während der Temperatur-Zeit Schweißzyklen. Daraus lässt sich der Einfluss der Wärmeeinwirkung beim Schweißen auf die Gefügeausbildung in der WEZ und der korrespondierenden mechanischen Eigenschaften qualitativ beschreiben. T2 - DVS Congress 2023 Große Schweißtechnische Tagung CY - Essen, Germany DA - 11.09.2023 KW - WEZ-Erweichung KW - Mikrolegierungseinflüsse KW - Hochfester Feinkornbaustahl KW - Kerbschlagzähigkeit PY - 2023 SN - 978-3-96144-230-0 VL - 389 SP - 218 EP - 225 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-59419 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Czeskleba, Denis A1 - Kannengießer, Thomas A1 - Mente, Tobias T1 - Reliable hydrogen determination in metallic materials and their weld joints: Parameters and challenges N2 - In the course of tomorrow's hydrogen-based energy transition, the construction of the corresponding infrastructure will play a central role. The majority of materials used to date are typically welded for component fabrication. In that context, steels are widely applied and can be prone to hydrogen embrittlement. This includes the classical delayed cold cracking during welding processing as well as embrittlement phenomena during operation. For the evaluation of any hydrogen effect on, for example, the mechanical properties of a welded metallic material, the hydrogen content must be precisely determined. In the case of welds, for example, according to ISO 3690, this is the isothermal carrier gas hot extraction (CGHE). CGHE is based on accelerated hydrogen degassing due to thermal activation of hydrogen at elevated temperatures. In addition to the pure quantification of hydrogen, thermal desorption analysis (TDA) with varied heating rates can be used to determine and evaluate the bonding state at microstructural defects in the material. For both techniques, experimental and measurement influences have to be considered, which have a great effect on the result. For CGHE, for example, ISO 3690 suggests different sample geometries as well as minimum extraction times. The present study summarizes results and experiences of numerous investigations with different sample temperatures and geometries (ISO 3690 type B and cylindrical TDA samples) regarding: the influence of the sample surface (polished/welded), measurement accuracies depending on the sample volume as well as the insufficient monitoring of the effect of the PI controller on the extraction temperature. In particular, a deviating extraction temperature to the set temperature, can significantly falsify the measurement results. Based on the results, methods are shown to quickly reach the desired extraction temperature without having to physically interfere with the measurement equipment. This serves to substantially improve the reliability of hydrogen measurement through increased signal stability and accelerated hydrogen desorption. In general, an independent temperature measurement with dummy samples for the selected heating procedure is advisable to exclude possible unwanted temperature influences already before the measurement. In addition (and way more important), the methods described can be transferred directly to industrial applications. T2 - 47th MPA-Seminar CY - Stuttgart, Germany DA - 10.10.2023 KW - Hydrogen assisted cracking KW - Carrier gas hot extraction KW - Welding KW - ISO 3690 KW - Metals PY - 2023 AN - OPUS4-58677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Schweißen im Wasserstoffanlagen- und Behälterbau - Eine Kurzübersicht T2 - DVS Berichte 387: Schweißen im Anlagen- und Behälterbau N2 - Wasserstoff erfüllt die zentrale Rolle für die Umwandlung der bisherigen fossil-basierten Energieerzeugung und -nutzung auf eine dekarbonisierte, nachhaltige Form. Dazu muss der Wasserstoff erzeugt, gespeichert, transportiert werden, bevor er wieder der Nutzung zugeführt wird. Hierzu sind entlang der gesamtem Prozesskette Wasserstofftechnologien notwendig, die einen sicheren Betrieb erfordern. Hierbei kommt dem schweißtechnischen Anlagen- und Behälterbau wesentliche Bedeutung zu, insbesondere (aber nicht ausschließlich) für Speicherung und Transport des Wasserstoffes. Der vorliegende Beitrag gibt einen kurzen Überblick, wo und wie die konventionelle Schweißtechnik hierzu wichtige Beiträge leistet. Die additive Fertigung, also das „Drucken“ von Bauteilen wird dabei zunehmend wichtiger, entlang der gesamtem Prozesskette der Wasserstofftechnologien. Gleichwohl darf nicht unterschätzt werden, dass auch wesentlicher Bedarf an der Erweiterung und teilweiser Neufassung von bestehenden Regel- und Normenwerken besteht. T2 - 51. Sondertagung "Schweißen im Behälter- und Anlagenbau" CY - Munich, Germany DA - 01.03.2023 KW - Wasserstoff KW - Anlagenbau KW - Schweißen KW - Studie KW - Pipeline PY - 2023 SN - 978-3-96144-219-5 VL - 387 SP - 83 EP - 88 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-57075 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Schweißen im Wasserstoffanlagen- und Behälterbau - Eine Kurzübersicht N2 - Wasserstoff erfüllt die zentrale Rolle für die Umwandlung der bisherigen fossil-basierten Energieerzeugung und -nutzung auf eine dekarbonisierte, nachhaltige Form. Dazu muss der Wasserstoff erzeugt, gespeichert, transportiert werden, bevor er wieder der Nutzung zugeführt wird. Hierzu sind entlang der gesamtem Prozesskette Wasserstofftechnologien notwendig, die einen sicheren Betrieb erfordern. Hierbei kommt dem schweißtechnischen Anlagen- und Behälterbau wesentliche Bedeutung zu, insbesondere (aber nicht ausschließlich) für Speicherung und Transport des Wasserstoffes. Der vorliegende Beitrag gibt einen kurzen Überblick, wo und wie die konventionelle Schweißtechnik hierzu wichtige Beiträge leistet. Die additive Fertigung, also das „Drucken“ von Bauteilen wird dabei zunehmend wichtiger, entlang der gesamtem Prozesskette der Wasserstofftechnologien. Gleichwohl darf nicht unterschätzt werden, dass auch wesentlicher Bedarf an der Erweiterung und teilweiser Neufassung von bestehenden Regel- und Normenwerken besteht. T2 - 51. Sondertagung "Schweißen im Behälter- und Anlagenbau" CY - Munich, Germany DA - 28.02.2023 KW - Wasserstoff KW - Fügetechnik KW - Schweißen KW - Studie PY - 2023 AN - OPUS4-57076 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Thermodynamic prediction of precipitations behaviour in HAZ of a gas metal arc welded S690QL with varying Ti and Nb content JF - Welding in the World, The International Journal of Materials Joining N2 - For a significant increase in the strength of high-strength fine-grained structural steels with a nominal yield strength ≥690 MPa, the addition of microalloying elements such as Nb and Ti is required. The standard specifications for the chemical composition of these steels (e.g., in EN 10025-6) often only give the manufacturer limit contents to achieve the defined properties. The effect of the alloying elements in the heat affected zone (HAZ) is sometimes completely contrary. This makes it difficult to adequately predict the batch dependency regarding weldability and the load-bearing behaviour of the welded joint. Three different micro-alloyed steels of the grade S690QL were produced on a laboratory scale, focusing on different Nb and Ti contents. To investigate the tempering effect, these were gas metal arc welded in three layers. In addition to metallographic investigations of individual HAZ areas, thermodynamic phase calculations were carried out using Thermo-Calc, following variations in the chemical composition. This provides an understanding of phase transformation, precipitation growth, and dissolution during welding as a function of temperature and cooling conditions. The results show a divergent metallurgical behaviour in the HAZ of the three different micro-alloyed steels. Thereby, the Ti micro-alloyed grade showed a strong softening of the HAZ in contrast to the Nb micro-alloyed grade. This can be attributed to a contrary precipitation behaviour during welding. KW - High-strength structural steel KW - Gas metal arc welding KW - HAZ-softening KW - Microalloying influences KW - Thermodynamic simulation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579988 DO - https://doi.org/10.1007/s40194-023-01550-2 SN - 0043-2288 SP - 1 EP - 10 PB - Springer AN - OPUS4-57998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Mente, Tobias T1 - Zuverlässige Wasserstoff Bestimmung in Metallen und ihren Schweißverbindungen: Parameter, Einflüsse, Grenzen T2 - DVS Berichte 389: DVS CONGRESS 2023 Große Schweißtechnische Tagung DVS CAMPUS N2 - Im Zuge der wasserstoffbasierten Energiewirtschaft von morgen, kommt der Errichtung der dementsprechenden Infrastruktur die zentrale Rolle zu. Der überwiegende Teil bisher eingesetzter und meist geschweißter Werkstoffe, wie Stähle, kann unter bestimmten Bedingungen zur Wasserstoffversprödung neigen. Dies umfasst die klassische verzögerte Kaltrissbildung während der Schweißverarbeitung als auch Versprödungsphänomene während des Betriebs. Für die Bewertung eines jeden Wasserstoffeffektes auf bspw. die mechanischen Eigenschaften eines geschweißten metallischen Werkstoffes, muss der Wasserstoffgehalt präzise bestimmt werden, Im Fall von Schweißnähten ist die beispielsweise nach der ISO 3690, die klassische isotherme Trägergas-Heißextraktion (TGHE). Die TGHE basiert dabei auf der beschleunigten Wasserstoffentgasung aufgrund der thermischen Aktivierung des Wasserstoffs bei erhöhten Temperaturen. Neben der reinen Quantifizierung des Wasserstoffs, kann über die thermische Desorptionsanalyse (TDA) mit variierten Heizraten, der Bindungszustand an mikrostrukturellen Defekten im Material festgestellt und bewertet werden. Für beide Techniken sind experimentelle und messtechnische Einflüsse zu beachten, die großen Effekt auf das Ergebnis haben. Für die TGHE schlägt die ISO 3690 schlägt beispielswiese verschiedene Probengeometrien sowie Mindestextraktionszeiten vor. Die vorliegende Studie fasst Ergebnisse und Erfahrungen zahlreicher Untersuchungen an der Bundesanstalt für Materialforschung und -prüfung (BAM) mit unterschiedlichen Probentemperaturen und Geometrien (ISO 3690 Typ B und zylindrische TDA-Proben) zusammen hinsichtlich: Einfluss der Probenoberfläche (poliert/geschweißt), Messgenauigkeiten in Abhängigkeit des Probenvolumens sowie die unzureichende Überwachung des Effektes des PI-Reglers auf die Extraktionstemperatur. Insbesondere eine abweichende Extraktionstemperatur zur eingestellten Temperatur, kann die Messergebnisse wesentlich verfälschen. Basierend auf den Ergebnissen werden Methoden aufgezeigt, um schnell die gewünschte Extraktionstemperatur zu erreichen, ohne physisch in das Messequipment eingreifen zu müssen. Dies dient der wesentlichen Verbesserung der Zuverlässigkeit der Wasserstoffmessung durch erhöhte Signalstabilität und beschleunigte Wasserstoffdesorption. Im Allgemeinen ist eine unabhängige Temperaturmessung mit Dummy-Proben für die gewählte Heizprozedur angeraten, um mögliche unerwünschte Temperatureinflüsse bereits vor der Messung auszuschließen. Die beschriebenen Methoden können ohne großen Aufwand direkt in die industrielle Anwendung überführt werden. T2 - DVS Congress 2023 CY - Essen, Germany DA - 11.09.2023 KW - Wasserstoff KW - Schweißen KW - Forschung KW - ISO 3690 PY - 2023 SN - 978-3-96144-230-0 VL - 389 SP - 435 EP - 442 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-58309 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Mente, Tobias T1 - Zuverlässige Wasserstoffbestimmung in Metallen und ihren Schweißverbindungen: Parameter, Einflüsse, Grenzen N2 - Im Zuge der wasserstoffbasierten Energiewirtschaft von morgen, kommt der Errichtung der dementsprechenden Infrastruktur die zentrale Rolle zu. Der überwiegende Teil bisher eingesetzter und meist geschweißter Werkstoffe, wie Stähle, kann unter bestimmten Bedingungen zur Wasserstoffversprödung neigen. Dies umfasst die klassische verzögerte Kaltrissbildung während der Schweißverarbeitung als auch Versprödungsphänomene während des Betriebs. Für die Bewertung eines jeden Wasserstoffeffektes auf bspw. die mechanischen Eigenschaften eines geschweißten metallischen Werkstoffes, muss der Wasserstoffgehalt präzise bestimmt werden, Im Fall von Schweißnähten ist die beispielsweise nach der ISO 3690, die klassische isotherme Trägergas-Heißextraktion (TGHE). Die TGHE basiert dabei auf der beschleunigten Wasserstoffentgasung aufgrund der thermischen Aktivierung des Wasserstoffs bei erhöhten Temperaturen. Neben der reinen Quantifizierung des Wasserstoffs, kann über die thermische Desorptionsanalyse (TDA) mit variierten Heizraten, der Bindungszustand an mikrostrukturellen Defekten im Material festgestellt und bewertet werden. Für beide Techniken sind experimentelle und messtechnische Einflüsse zu beachten, die großen Effekt auf das Ergebnis haben. Für die TGHE schlägt die ISO 3690 schlägt beispielswiese verschiedene Probengeometrien sowie Mindestextraktionszeiten vor. Die vorliegende Studie fasst Ergebnisse und Erfahrungen zahlreicher Untersuchungen an der Bundesanstalt für Materialforschung und -prüfung (BAM) mit unterschiedlichen Probentemperaturen und Geometrien (ISO 3690 Typ B und zylindrische TDA-Proben) zusammen hinsichtlich: Einfluss der Probenoberfläche (poliert/geschweißt), Messgenauigkeiten in Abhängigkeit des Probenvolumens sowie die unzureichende Überwachung des Effektes des PI-Reglers auf die Extraktionstemperatur. Insbesondere eine abweichende Extraktionstemperatur zur eingestellten Temperatur, kann die Messergebnisse wesentlich verfälschen. Basierend auf den Ergebnissen werden Methoden aufgezeigt, um schnell die gewünschte Extraktionstemperatur zu erreichen, ohne physisch in das Messequipment eingreifen zu müssen. Dies dient der wesentlichen Verbesserung der Zuverlässigkeit der Wasserstoffmessung durch erhöhte Signalstabilität und beschleunigte Wasserstoffdesorption. Im Allgemeinen ist eine unabhängige Temperaturmessung mit Dummy-Proben für die gewählte Heizprozedur angeraten, um mögliche unerwünschte Temperatureinflüsse bereits vor der Messung auszuschließen. Die beschriebenen Methoden können ohne großen Aufwand direkt in die industrielle Anwendung überführt werden. T2 - DVS Congress 2023 CY - Essen, Germany DA - 11.09.2023 KW - Wasserstoff KW - Messung KW - Trägergasheißextraktion KW - ISO 3690 KW - Schweißverbindung PY - 2023 AN - OPUS4-58307 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -