TY - CONF A1 - Rhode, Michael T1 - Reliable hydrogen determination in metallic materials and their weld joints: Parameters and challenges N2 - In the course of tomorrow's hydrogen-based energy transition, the construction of the corresponding infrastructure will play a central role. The majority of materials used to date are typically welded for component fabrication. In that context, steels are widely applied and can be prone to hydrogen embrittlement. This includes the classical delayed cold cracking during welding processing as well as embrittlement phenomena during operation. For the evaluation of any hydrogen effect on, for example, the mechanical properties of a welded metallic material, the hydrogen content must be precisely determined. In the case of welds, for example, according to ISO 3690, this is the isothermal carrier gas hot extraction (CGHE). CGHE is based on accelerated hydrogen degassing due to thermal activation of hydrogen at elevated temperatures. In addition to the pure quantification of hydrogen, thermal desorption analysis (TDA) with varied heating rates can be used to determine and evaluate the bonding state at microstructural defects in the material. For both techniques, experimental and measurement influences have to be considered, which have a great effect on the result. For CGHE, for example, ISO 3690 suggests different sample geometries as well as minimum extraction times. The present study summarizes results and experiences of numerous investigations with different sample temperatures and geometries (ISO 3690 type B and cylindrical TDA samples) regarding: the influence of the sample surface (polished/welded), measurement accuracies depending on the sample volume as well as the insufficient monitoring of the effect of the PI controller on the extraction temperature. In particular, a deviating extraction temperature to the set temperature, can significantly falsify the measurement results. Based on the results, methods are shown to quickly reach the desired extraction temperature without having to physically interfere with the measurement equipment. This serves to substantially improve the reliability of hydrogen measurement through increased signal stability and accelerated hydrogen desorption. In general, an independent temperature measurement with dummy samples for the selected heating procedure is advisable to exclude possible unwanted temperature influences already before the measurement. In addition (and way more important), the methods described can be transferred directly to industrial applications. T2 - 47th MPA-Seminar CY - Stuttgart, Germany DA - 10.10.2023 KW - Hydrogen assisted cracking KW - Carrier gas hot extraction KW - Welding KW - ISO 3690 KW - Metals PY - 2023 AN - OPUS4-58677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Numerical simulation of weld heat input effect on microstructure and hydrogen diffusion in thick-walled S690 submerged arc welded joints N2 - High-strength, low-alloy (HLSA) steels such as S690 are an attractive option for heavy industries such as offshore wind turbines and peripheral equipment due to their combination of excellent mechanical properties and weldability. The construction of these thick-walled structures requires highly efficient welding processes such as submerged arc welding (SAW). However, SAW presents challenges related to delayed hydrogen assisted cold cracking (HACC). Despite its importance, the effect of different diffusion coefficients on the cold cracking susceptibility of different microstructures within SAW-welded S690 steels is not fully understood. For this reason, the present study focuses on comparing the cold cracking susceptibility of thermomechanically rolled (TM) or quenched and tempered (QL) variants of S690 steel. SAW was performed on specimens of both steel grades to produce weldments consisting of weld metal, heat-affected zone (HAZ), and base metal. Electrochemical hydrogen permeation tests (ISO 17081) were performed to determine the microstructure specific coefficients. Using the obtained coefficients, a numerical model was developed to identify the time- and microstructure-dependent local hydrogen diffusion and its influence on the distribution within the welds. The results showed that the TM grade exhibited slightly accelerated hydrogen diffusion compared to the QL grade, which is beneficial for hydrogen reduction and increases the HACC resistance. However, the further simulations with different ply sequences showed that the welding heat input (i.e. welding ply sequence) had a significantly higher effect on hydrogen accumulation. Specifically, increased welding heat input and increased thicknesses decrease hydrogen diffusivity. For this reason, microstructure-specific hydrogen diffusion played a minor role in thick-layer SAW joints compared to the need to control the welding parameters (layer sequence, individual layer thickness, welding heat input). T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - Hydrogen assisted cracking KW - Welding KW - High strength steels KW - Numerical simulation KW - Electrochemical permeation PY - 2025 AN - OPUS4-64158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Effect of Ti and Nb on hydrogen trapping in welded S690 HSLA steel and effect on delayed cold cracking N2 - Fine-grain, high-strength, low-alloy (HSLA) structural steels with yield strengths > 600 MPa are now the state of the art in construction applications such as mobile cranes and civil engineering. HSLA grades derive their strength from a combination of specific heat treatment and the underlying chemical composition. In this context, Ti or Nb are essential to obtain a fine-grained microstructure as well as the necessary carbides or nitrides for precipitation strengthening. In this context, the specific effect of Ti or Nb-rich compounds on hydrogen trapping and diffusion is well known for special laboratory cast alloys, but unknown for realistic steel compositions. For this reason, a series of S690Q-based alloys were synthesized, close to a real steel composition, but with well controlled Ti or Nb additions in different amounts. Specimens were obtained from these alloys by electrochemical discharge machining (EDM). The specimens were tested using the well-established electrochemical permeation technique. From the experimental results, the hydrogen diffusion coefficients and the analytical subsurface hydrogen concentration were calculated. In addition, the hydrogen trapping behavior at elevated temperatures was interpreted by thermal desorption analysis (TDA) using different heating rates of hydrogen charged samples. The results showed that in contrast to metallurgically "pure" laboratory cast alloys, realistic chemical compositions were similar in their hydrogen trapping behavior, despite some small differences. All investigated steel grades exhibited shallow and reversible hydrogen trapping, regardless of their chemical composition. Of course, the experiments only allowed the calculation of effective diffusion coefficients and trapping energies, which represent an average of the entire microstructure. Nevertheless, HSLA steels are typically joined by arc welding, which includes the risk of delayed hydrogen assisted cracking. From the point of view of welding practice, however, a more or less identical hydrogen diffusion behavior means that no special "metallurgically specific", justifiable measures need to be considered, despite the well-established processes such as "soaking" or dehydrogenation heat treatment. Of course, a closer look at the heat-affected zone (HAZ) or the weld metal of the specific welds is necessary. However, especially in the case of thick-walled welds, it is assumed that the weld metal and HAZ are similar to the base material due to the multi-layer welding, which results in multiple annealing cycles of the weld metal and HAZ. T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - Hydrogen assisted cracking KW - HSLA KW - Diffusion KW - Electrochemical permeation PY - 2025 AN - OPUS4-64156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Large scale hydrogen assisted cracking test for thick walled SAW joints for offshore applications N2 - Offshore wind turbines continuously increase in size and weight and demand adequate offshore foundations concepts like monopiles, tripods or jackets. These components are typically submerged arc welded (SAW) high-strength thick steel plates like the S420ML. During welding, the occurrence of delayed hydrogen assisted cracking (HAC) must be anticipated. HAC is a critical combination of the local hydrogen concentration within a susceptible microstructure under certain mechanical load, i.e., the occurring (welding) residual stresses. The welding sequence of the thick-walled plates complicate the residual stress distribution due to the necessary repeated thermal cycling, i.e., welding seam / layer deposition to fill the joint. For that purpose, SAW with two-wire-technique was used to weld a specially designed and prototype-like mock-up of a real component with a thickness of 50 mm, filled with 22 passes and a seam length of 1,000 mm. Additional welded stiffeners simu-lated the effect of a high restraint, to stimulate critical HAC conditions. The necessity of a minimum waiting time (MWT) before the NDT can be conducted (to exclude HAC) was critically verified by the application of ultrasonic testing of the welded joint at different time-steps of the NDT of 48 h after welding. The residual stresses were determined by a robot XRD goniometer. Tensile residual stresses up to the yield limit are found both in the weld metal and in the heat-affected zone. Numerical modelling allowed the qualitative estimation of the hydrogen diffusion in the weld. A remarkable HAC occurrence was not identified and proves both, a certain resistance of the weld joint to HAC and the (questionable) duration of the MWT. T2 - IIW Annual Assembly, Meeting of Commission II-C CY - Singapore DA - 19.07.2023 KW - Mock-up KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Offshore KW - Steel PY - 2023 AN - OPUS4-57977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Component test for the assessment of hydrogen assisted cracking susceptibility of thick-walled submerged arc welded offshore steels N2 - Offshore wind turbines (OWT) are a key factor of the sustainable energy generation of tomorrow. The continuously increasing installation depths and weight of the OWTs require suitable foundation concepts like monopiles or tripods. Typically, mild steels like the S420ML are used with plate thicknesses up to several hundreds of mm causing high restraints in the weld joints. Due to the large plate thickness, submerged arc welding (SAW) with multiple wires is the state-of-the-art welding procedure. As a result of the very high stiffness of the construction, a certain susceptibility for time-delayed hydrogen-assisted cracking (HAC) may occur. The evaluation of crack susceptibility is very complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry was developed to transfer the real stiffness conditions to laboratory (i.e., workshop) scale. The investigated mock-up, weighing 350 kg, comprised heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated via the use of welding fluxes in dry (HD < 5 ml/100g Fe) and moisture condition (HD > 15 ml/100g Fe). The residual stresses were determined by a robot X-ray diffractometer. Areas of critical tensile residual stress (at the level of the yield strength) were found in the weld metal and heat affected zone. To identify possible delayed cracking, the welds were tested by phased array ultrasonic testing (PAUT) after 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and welding parameters. T2 - AJP 2023: 3rd International Conference on Advanced Joining Processes 2023 CY - Braga, Portugal DA - 19.10.2023 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Component test KW - NDT KW - Waiting time PY - 2023 AN - OPUS4-58672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen diffusion in thick-walled S690 SAW joints: Part 1 - Experimental determination of microstructure dependent diffusion coefficients N2 - S690 steels are widely used in heavy-duty applications, such as structural components, mobile cranes, and industrial plant construction, owing to their high strength and weldability. However, thick-plate submerged arc welding (SAW) can introduce elevated hydrogen levels and residual stresses that promote time-delayed hydro-gen-assisted cold cracking (HACC). Accurate, microstructure-specific diffusion data are scarce, limiting pre-dictive HACC assessments. This study presents an experimental determination of hydrogen diffusion coeffi-cients (DH) in two S690 variants: thermomechanically rolled (S690MC) and quenched and tempered (S690Q). Multi-layer SAW welds were produced from 30 mm-thick plate material at three heat input levels, and diffusion membranes were extracted from weld metal (WM), heat-affected zone (HAZ), and base material (BM). Hydro-gen permeation tests, conducted in accordance with DIN EN ISO 17081, yielded time-normalized flux curves from which DH was derived using the inflection-point method. At room temperature, DH values ranged from 6 × 10⁻⁵ to 9 × 10⁻⁵ mm²/s across all regions and heat inputs, with no significant difference between S690MC and S690Q. Weld metal exhibited marginally lower DH, attributed to enhanced hydrogen trapping, while base mate-rial measurements showed greater variability. These microstructure-resolved diffusion coefficients fill a critical data gap and provide essential input for the numerical simulations presented in Part 2. The results also support practical guidelines for mitigating HACC risk through the optimization of welding parameters. T2 - 78th IIW Annual Assembly, Meeting of Commission II-C CY - Genoa, Italy DA - 22.06.2025 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - High strength steels KW - Hydrogen Diffusion KW - Electrochemical permeation PY - 2025 AN - OPUS4-63540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Weld heat input effect on microstructure and hydrogen diffusion in thick-walled S690 submerged arc welded joints N2 - High-strength, low-alloy (HLSA) steels such as S690 are an attractive option for heavy industries such as offshore wind turbines and peripheral equipment due to their combination of excellent mechanical properties and weldability. The construction of these thick-walled structures requires highly efficient welding processes such as submerged arc welding (SAW). However, SAW faces challenges related to delayed hydrogen assisted cold cracking (HACC). Despite its importance, the effect of different diffusion coefficients on the cold cracking susceptibility of different microstructures within SAW-welded S690 steels is not fully understood. For this reason, the present study focuses on comparing the cold cracking susceptibility of thermomechanically rolled (TM) or quenched and tempered (QL) variants of S690 steel. Submerged arc welding was performed on both steel grades at different welding heat inputs. From these thick-walled welds, metallic membranes were extracted from the weld metal, the heat-affected zone (HAZ), and the two base metals. The specimens were subjected to electrochemical hydrogen permeation tests (according to ISO 17081) to determine the microstructure-specific hydrogen diffusion coefficients. In general, increased welding heat input and thickness decreased the hydrogen diffusion coefficients, i.e., the time required for hydrogen diffusion increased. In addition, the results showed that the TM grade exhibited slightly accelerated hydrogen diffusion coefficients compared to the QL grade, which is beneficial for hydrogen reduction and increases the HACC resistance. As a result, the microstructure-specific assessment of hydrogen diffusion in the BM, HAZ or WM of the SAW joint was less important for a given set of welding parameters compared to other welding processes such as gas metal arc welding (GMAW). The reason is that in multilayer SAW, the relatively large welding heat input and multiple annealing resulted in similar microstructures, resulting in very close hydrogen diffusion coefficients. From this point of view, it is sufficient to characterize the hydrogen diffusion coefficients of both the weld metal and the base material. T2 - 78th IIW Annual Assembly and International Conference CY - Genoa, Italy DA - 26.06.2025 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Diffusion KW - Electrochemical permeation KW - Microstructure PY - 2025 AN - OPUS4-63543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen diffusion in thick-walled S690 SAW joints: Part 2 - Predictive modeling of welding heat input and microstructure influence N2 - High-strength low-alloy (HSLA) steels such as S690 are widely employed in thick-walled welded structures, where hydrogen-assisted cold cracking (HACC) remains a persistent concern. While microstructure-specific hydrogen diffusion coefficients (DH) for weld metal (WM), heat-affected zone (HAZ), and base material (BM) were experimentally established in Part 1 of this study, their quantitative influence on hydrogen accumulation and effusion has not yet been fully clarified. This work presents a transient, spatially resolved numerical model for simulating hydrogen transport in multi-pass submerged arc welds. The model integrates experimentally determined DH values with realistic thermal cycles and temperature-dependent boundary conditions. Developed in Python, the simulation tool is purpose-built for hydrogen diffusion in welded joints and offers a focused, transparent alternative to general-purpose finite element platforms. Parametric analyses demonstrate that, although the diffusion coefficients vary by up to 50 %, their impact on overall hydrogen retention is minor. In contrast, welding parameters such as plate thickness, bead geometry, cooling time (t₈/₅), and interpass tem-perature exert a dominant influence on hydrogen distribution. Despite clear microstructural differences between the thermomechanically rolled (S690MC) and quenched and tempered (S690Q) variants, including hardness softening versus hardening in the heat-affected zone of the (pen)ultimate weld bead, the simulations confirm that their diffusion behavior and hydrogen solubility are closely aligned. Consequently, differences in diffusivity and solubility exert only a minor influence on hydrogen retention compared to thermal exposure and joint geometry. These findings support the interchangeable use of both steel grades in terms of HACC risk due to hydrogen diffusion kinetics, under comparable welding conditions. T2 - 78th IIW Annual Assembly, Meeting of Commission II-C CY - Genoa, Italy DA - 22.06.2025 KW - Hydrogen assisted cracking KW - Numerical simulation KW - Hydrogen diffusion PY - 2025 AN - OPUS4-63541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Influence of heat control on hydrogen distribution in high-strength multi-layer welds with narrow groove N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa are gaining popularity in civil engineering and construction of heavy vehicles. With increasing yield strength, the susceptibility for degradation of the mechanical properties in presence of diffusible hydrogen, i.e. hydrogen-assisted cracking (HAC) generally increases. HAC is a result of the critical interaction of local microstructure, mechanical load and hydrogen concentration. In existing standards for welding of HSLA steels, recommendations (preheating, interpass temperature and hydrogen removal heat treatment) are given to limit the amount of introduced hydrogen during welding. The recommendations are based on investigations with conventional arc welding processes. In the past decade, modern weld technologies were developed to enable welding of narrower weld seams with V-grooves of 30°, e.g. the modified spray arc process. In that connection, a reduced number of weld runs and weld volume are important technical and, hence, economic benefits. In the present study, the hydrogen distribution in S960QL multi-layer welds with thickness of 20 mm was analyzed depending on heat control. The influence of different weld seam opening angles (grooves), heat input, interpass temperature and hydrogen removal procedures was investigated. The results show that weldments with narrow groove contained increased diffusible hydrogen amount. Reasons had been longer diffusion path and higher wire feeding rate compared to conventional welds with wider 60° Vgroove. Hydrogen concentration has been reduced by decreasing both the heat input and interpass temperature. Hydrogen free weldments were achieved via hydrogen removal heat treating at 250 °C for 5 h subsequently after welding. Regarding the strength of the investigated steel, it is recommended to conduct a heat treatment after welding. For the first time, hydrogen concentration gradients were experimentally determined across the weld seam thickness in HSLA multi-layer welds. T2 - Intermediate Meeting of IIW Commission II-A CY - Genoa, Italy DA - 05.03.2018 KW - Hydrogen assisted cracking KW - Welding KW - Heat control KW - High-strength steel PY - 2018 AN - OPUS4-44426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Modeling of hydrogen-assisted cracking (HAC) in duplex stainless steels (DSS) N2 - Modeling of Hydrogen-Assisted Cracking (HAC) in Duplex Stainless Steels (DSS): - Hydrogen causes significant degradation in DSS and consequently HAC - Mechanisms of HAC have not been fully understood in two-phase microstructures - Mesoscale numerical modeling for HAC in DSS was created, coupled to the macroscale, enabling simulation of HAC in both phases independent from predefined crack paths T2 - International Hydrogen Conference - Material Performance in Hydrogen Environments CY - Jackson Lake Lodge, Moran, Wyoming, USA DA - 11.09.2016 KW - Hydrogen KW - Numerical modeling KW - Duplex stainless steel KW - Hydrogen assisted cracking PY - 2016 AN - OPUS4-37404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengießer, Thomas A1 - Czeskleba, Denis T1 - Simulation of hydrogen distribution in submerged arc welded heavy plates as tool for evaluating cold cracking sensitivity for offshore structures N2 - Foundation structures for offshore wind turbines are typically made of heavy plate struc-tural steels, such as S420ML, welded by submerged arc welding. Due to the welding process conditions, higher amounts of hydrogen can be introduced. In this context, large plate thicknesses result in long diffusion paths and a prolonged diffusion time for hydrogen at ambient temperature and possible delayed hydrogen-assisted cold cracking. As a result, hydrogen can accumulate in areas of high mechanical stress and strain. Due to the delayed diffusion, a minimum waiting time of up to 48 h must be observed before non-destructive testing can be performed. In addition, the assessment of possible cold crack locations is very complex. For this reason, a numerical model of a component-like weld test was developed to simulate the temperature field during welding and subsequent cooling. A hydrogen diffusion model based on the temporal-local temperature distribution was established. It was applied to simulate the change of hydrogen distribution as a function of temperature cycle during multi-layer welding and further for the entire waiting time interval ≤ 48 h. As a result, crack critical areas could be evaluated in terms of accu-mulated hydrogen. An advantage of the diffusion model is the simulation of a normalized concentration, i.e. between "0" (no hydrogen) and "1" (max. concentration), which can be scaled to experimentally determined hydrogen concentrations. Finally, selected results for increased real hydrogen ingress are presented, which confirm the relatively high crack resistance of the S420 submerged arc welded joint. KW - Hydrogen assisted cracking KW - Diffusion KW - Numerical simulation KW - Offshore steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632416 DO - https://doi.org/10.21268/20250507-6 SP - 1 EP - 12 PB - Technische Universität Clausthal CY - Clausthal-Zellerfeld, Deutschland AN - OPUS4-63241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Mente, Tobias A1 - Steppan, E. A1 - Kannengießer, Thomas A1 - Steger, J. T1 - Hydrogen trapping in T24 Cr-Mo-V steel weld joints - microstructure effect vs. experimental influence on activation energy for diffusion N2 - Hydrogen-assisted cracking is a critical combination of local microstructure, mechanical load and hydrogen concentration. Welded microstructures of low-alloyed creep-resistant Cr-Mo-V steels show different hydrogen trapping kinetics. This influences the adsorbed hydrogen concentration as well as the diffusion by moderate or strong trapping. A common approach to describe hydrogen traps is by their activation energy that is necessary to release hydrogen from the trap. In the present study, Cr-Mo-V steel T24 (7CrMoVTiB10-10) base material and TIG weld metal were investigated. Electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis (TDA) with different linear heating rates. The results show two different effects. At first, the microstructure effect on trapping is evident in terms of higher hydrogen concentrations in the weld metal and increased activation energy for hydrogen release. Secondly, it is necessary to monitor the real specimen temperature. A comparison between the adjusted heating rate and the real specimen temperature shows that the calculated activation energy varies by factor two. Thus, the trap character in case of the base material changes to irreversible at decreased temperature. Hence, the effect of the experimental procedure must be considered as well if evaluating TDA results. Finally, realistic temperature assessment is mandatory for calculation of activation energy via TDA. KW - Creep-resistant steel KW - Hydrogen assisted cracking KW - Thermal desorption analysis KW - Welding KW - Microstructure KW - Diffusion PY - 2018 DO - https://doi.org/10.1007/s40194-017-0546-6 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 2 SP - 277 EP - 287 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-44505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rhode, Michael A1 - Münster, C. A1 - Mente, Tobias A1 - Böllinghaus, Thomas ED - Somerday, B.P. ED - Sofronis, P. T1 - Influence of experimental conditions and calculation method on hydrogen diffusion coefficient evaluation at elevated temperatures N2 - Literature provides a wide range of hydrogen diffusion coefficients for low alloyed steels used in power plants. In fact, experimental boundary conditions and calculation methods have influence on the determination of these coefficients. The diffusion and trapping behavior in creep-resistant steel 7CrMoVTiB10-10 has been studied. Based on experimental carrier gas hot extraction (CGHE) data, a numerical model has been developed to describe the hydrogen transport and respective hydrogen distribution at elevated temperatures. The numerical results suggest that common calculation methods for diffusion coefficients are limited for experimental data analysis. The sample preparation time before CGHE experiment influences the determined diffusion coefficients with the consequence that non-homogeneous hydrogen concentration profiles have to be considered in the simulations. KW - Temperature effect KW - Hydrogen diffusion KW - Creep-resistant steel KW - Hydrogen assisted cracking KW - Carrier gas hot extraction PY - 2017 SN - 978-0-7918-6138-7 DO - https://doi.org/10.1115/1.861387_ch56 SP - 495 EP - 503 PB - ASME CY - New York, USA ET - 1 AN - OPUS4-42502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P A1 - Nitsche, A T1 - Hydrogen effect on mechanical properties and cracking of creep‑resistant 9% Cr P92 steel and P91 weld metal N2 - Martensitic 9% Cr steels like P91 and P92 can show an increased susceptibility to delayed hydrogen-assisted cracking. The focus of this study was the microstructure and heat treatment efect on the mechanical properties of P92 base material and P91 multi-layer weld metal in both as-welded and post weld heat treated (PWHT) condition. Tensile tests with hydrogen free reference samples and electrochemically hydrogen charged samples were carried out; the mechanical properties were assessed and supported by detailed fractographic analysis. Finally, a hydrogen and microstructure-dependent fracture criterion is established. All investigated microstructures showed a hydrogen-infuenced degradation of the mechanical properties compared to the hydrogen-free reference samples. The as-welded martensitic P91 weld metal had the highest degree of degradation in the presence of hydrogen. The P91 PWHT weld metal and the P92 base material had comparable properties. From that point of view, a signifcantly increased risk for hydrogen-assisted cold cracking during welding fabrication of P91 weld joints must be considered before any heat treatment is conducted. T2 - IIW Annual Assembly, Meeting of Commission IX-C CY - Tokyo, Japan DA - 16.07.2022 KW - Creep-resisting materials KW - Welding KW - Hydrogen assisted cracking KW - Hydrogen embrittlement KW - Mechanical properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564070 DO - https://doi.org/10.1007/s40194-022-01410-5 SN - 0043-2288 SP - 1 EP - 12 PB - Springer Nature CY - Basel (CH) AN - OPUS4-56407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P. A1 - Nitsche, A. T1 - Thickness and microstructure effect on hydrogen diffusion in creep‑resistant 9% Cr P92 steel and P91 weld metal N2 - Martensitic 9% Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. Limited data on room temperature diffusion coefficients reported in literature vary widely by several orders of magnitude (mostly attributed to variation in microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. From the results obtained, diffusion coefficients were calculated using to different methods, time-lag, and inflection point. Results show that, despite microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. KW - Creep-resistant steel KW - Diffusion KW - Hydrogen assisted cracking KW - Welding KW - Electrochemical permeation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540645 DO - https://doi.org/10.1007/s40194-021-01218-9 SN - 0043-2288 SP - 1 EP - 16 PB - Springer Nature Switzerland AG AN - OPUS4-54064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Rhode, Michael T1 - Hydrogen embrittlement and mechanical properties of 9 % Cr P92 steel and P91 weld metal N2 - Martensitic 9 %-Cr steels like P91 and P92 can show an increased susceptibility to delayed hydrogen assisted cracking. The focus of this study was the microstructure and heat treatment effect on the mechanical properties of P92 base material and P91 multi-layer weld metal in both as-welded and post weld heat treated (PWHT) condition. Tensile tests with hydrogen free reference samples and electrochemically hydrogen charged samples were carried out, the mechanical properties were assessed and supported by dedicated fractographic analysis. In addition, hydrogen and microstructure dependent fracture criteria were calculated. All investigated microstructures showed a hydrogen influenced degradation of the mechanical properties compared to the hydrogen free reference samples. In that connection, the as welded martensitic P91 weld metal had the highest degree of degradation in presence of hydrogen. The P91 PWHT weld metal and the P92 base material had comparable properties. From that point of view, a significantly increased risk for hydrogen assisted cold cracking during welding fabrication of P91 weld joints must be considered before any heat treatment is conducted. T2 - IIW Annual Assembly, Meeting of Commission IX-C CY - Tokyo, Japan DA - 21.07.2022 KW - Creep-resistant steel KW - Mechanical properties KW - Hydrogen assisted cracking KW - Weld joint KW - Degradation PY - 2022 AN - OPUS4-55462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steffens, B. R. A1 - Böllinghaus, Thomas A1 - Shoales, G. A. A1 - Rhode, Michael ED - Somerday, B. P. ED - Sofronis, P. T1 - Hydrogen dependent material properties of UHSS for aerospace applications N2 - Quantitative investigations of hydrogen dependent properties of aircraft landing gear materials have only scarcely been carried out in the past. They are essential for respective component life time assessments. To better understand the behavior of these landing gear materials in a hydrogen rich environment, specimens were charged in the condition as delivered with known concentrations of hydrogen and then mechanically tested to evaluate the degradation effects. The present contribution is focused on evaluating the hydrogen concentration dependent material properties and the respective fracture topographies of the two investigated steels, and then continued by the comparison of the results with other previously investigated martensitic steels in order to better understand the thresholds for these materials to maintain structural integrity. T2 - International Hydrogen Conference 2016 CY - Jackson Lake Lodge, Moran, WY, USA DA - 11.09.2016 KW - Material properties KW - Hydrogen assisted cracking KW - Degradation KW - Aerospace materials KW - Ultra high strength steels PY - 2017 SN - 978-0-7918-6138-7 DO - https://doi.org/10.1115/1.861387_ch12 SP - 123 EP - 131 PB - ASME CY - New York, USA AN - OPUS4-42504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -