TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Mayr, P. A1 - Nitsche, A. A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Hydrogen diffusion in creep-resistant 9% Cr P91 multi-layer weld metal JF - Welding in the World N2 - Welded components of P91 9% Cr steel demand for careful welding fabrication with necessary post weld heat treatment (PWHT). Before the PWHT, a hydrogen removal heat treatment is necessary for avoidance of hydrogen assisted cracking (HAC). In this context, the microstructure and temperature-dependent hydrogen diffusion is important, and reliable diffusion coefficients of P91 weld metal are rare. For that reason, the diffusion behavior of P91 multi-layer weld metal was investigated for as-welded (AW) and PWHT condition by electrochemical permeation experiments at room temperature and carrier gas hot extraction (CGHE) from 100 to 400 °C. Hydrogen diffusion coefficients were calculated, and the corresponding hydrogen concentration was measured. It was ascertained that both heat treatment conditions show significant differences. At room temperature the AW condition showed significant hydrogen trapping expressed by to seven times lower diffusion coefficients. A preferred diffusion direction was found in perpendicular direction expressed by high permeability. The CGHE experiments revealed lower diffusion coefficients for the AW condition up to 400 °C. In this context, a hydrogen concentration of approximately 21 ml/100 g was still trapped at 100 °C. For that reason, a certain HAC susceptibility of as-welded P91 weld metal cannot be excluded, and hydrogen removal should be done before PWHT. KW - Creep resisting materials KW - Diffusion KW - Hydrogen KW - Weld metal KW - Post weld heat treatment KW - Microstructure PY - 2020 DO - https://doi.org/10.1007/s40194-019-00828-8 SN - 0043-2288 VL - 64 IS - 2 SP - 267 EP - 281 PB - Springer AN - OPUS4-50471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Buzolin, R.H. A1 - Richter, Tim A1 - Pixner, F. A1 - Rhode, Michael A1 - Schroepfer, Dirk A1 - Enzinger, N. T1 - Microstructure and texture characterisation of friction stir welded CoCrNi and CoCrFeMnNi multi-principle element alloys JF - Materials Today Communications N2 - This work investigates the microstructure formed in friction stir welds of FCC alloys, focused on two multiprincipal alloys: a CoCrFeMnNi high-entropy alloy (HEA) and a CoCrNi medium-entropy alloy (MEA). A commercial stainless steel AISI 304 is used for comparison. The largest nugget was formed in the MEA, while the smallest was formed in the HEA. Grain refinement occurs in the stirred zone in all welds. Discontinuous dynamic recrystallisation is the predominant restoration mechanism during friction stir welding of the three investigated alloys. A sharp decrement in the Σ3 boundary fraction occurs in the stirred zone of the AISI 304 and HEA welds, while comparable values with the base metal are found for the MEA weld. The peak in the maximum index of crystallographic texture is observed on the advancing side of the stirred zone of the AISI 304 weld. A strong <001> θ-fibre texture is formed in the advancing side of the nugget in the AISI 304 from a well-established {123} <634> S-type texture in the base metal. Multiple crystallographic texture components without specific fibres are identified in most regions of the welds, indicating the complex shear path history during friction stir welding. KW - Microstructure KW - Multiple principal element alloy KW - Friction stir welding KW - Electron backscattered diffraction KW - Crystallographic texture PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572987 DO - https://doi.org/10.1016/j.mtcomm.2023.105870 VL - 35 SP - 1 EP - 14 PB - Elsevier Ltd. CY - Amsterdam (NL) AN - OPUS4-57298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Rhode, Michael T1 - Residual stresses in a high- and a medium-entropy alloy due to TIG and friction stir welding JF - Journal of manufacturing and materials processing N2 - The new alloying concept of multi-element systems with defined entropy (HEA—high-entropy alloy; MEA—medium-entropy alloy) is gaining increasing importance in materials research. Significantly improved properties or combinations of properties are shown by some HEA/MEA systems. Thus, primarily the production and resulting microstructures of HEA, as well as its properties, have been investigated so far. Furthermore, processing is a main issue in transferring HEA systems from the laboratory to real components. Since welding is the most important joining process for metals, it is crucial to investigate the influence of welding to guarantee component integrity. Welding leads to residual stresses, which significantly affect the component integrity. Hence, the focus of this study is the residual stress formation and distribution in a CoCrFeMnNi HEA and ternary CoCrNi MEA using two different welding processes: tungsten inert gas (TIG) welding and solid-state friction stir welding (FSW). As a pathway for the application of HEA in this investigation, for the first time, residual stress analyses in realistic near-component specimens were performed. The residual stresses were determined by X-ray diffraction (XRD) on the surfaces of top and root weld side. The results were correlated with the local welding microstructures. The results show that both FSW and TIG generate significant tensile residual stresses on the weld surfaces in, and transverse to, the welding direction. In the case of FSW of the CoCrFeMnNi HEA, the longitudinal residual stresses are in the range of the yield strength of approx. 260 MPa in the weld zone. KW - High entropy alloy KW - Welding KW - Residual stresses KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567039 DO - https://doi.org/10.3390/jmmp6060147 SN - 2504-4494 VL - 6 IS - 6 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-56703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -