TY - CONF A1 - Maiwald, Michael T1 - Quantitative NMR Spectroscopy (qNMR) as an Indispensable Instrumental Analytical Method and its Metrological Application N2 - Introduction NMR spectroscopy is one of the most important analytical methods in organic chemistry. While most analyses are carried out qualitatively with the aim of substance identification and structure elucidation, quantitative NMR spectroscopy (qNMR) is increasingly gaining importance in research and industry. qNMR provides the most universally applicable form of direct purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. Methods One of the most attractive features of quantitative NMR spectroscopy is that the NMR peak areas can be used directly for concentration quantification without further calibration. Another advantage of NMR spectroscopy is that the method has a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method that is independent of the matrix. This enables automated robust data evaluation strategies that can be used for online applications of qNMR spectroscopy. Jancke et al. proposed NMR spectroscopy as a relative primary analytical method because it can be fully described by mathematical equations from which a complete uncertainty budget can be derived, allowing it to be used at the highest metrological level. Weber et al. discussed in detail important aspects of the procedure that enable the realisation of low measurement uncertainties in qNMR measurements. Since certification of CRM requires expanded mea¬sure¬ment uncertainties of less than 0.5 % (relative), the work of Weber et al. demonstrated for the first time that qNMR can fulfil this criterion. Results To date, further comparative studies have been carried out in metrology and industry, demonstrating the performance of quantitative NMR spectroscopy and further reducing measurement uncertainties. The development of validation concepts and the commercial availability of suitable certified reference materials facilitate the application, especially in the usually highly regulated industrial environment. Users can thus accelerate the development of analytical methods. The talk will cover a wide range of topics from current metrological activities to new challenges for qNMR spectroscopy and also deals with aspects such as validation and accreditation. Innovative aspects • qNMR provides the most universally applicable form of direct purity determination • Expanded measurement uncertainties lower than 0.15 % (relative) possible • Benchtop NMR instruments increasingly used for qNMR spectroscopy T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Quantitative NMR Spectroscopy KW - qNMR KW - Process Analytical Technology KW - NMR Validation KW - NMR Accreditation KW - Purity KW - ANAKON PY - 2023 AN - OPUS4-57304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Online NMR spectroscopy paves the way for short development times in industrial reaction and process monitoring N2 - Modular chemical production is a tangible implementation of the digital transformation of the specialty chemicals process industry. In particular, it enables acceleration of process development and thus faster time to market by flexibly interconnecting and orchestrating standardized physical modules and bringing them to life. For this purpose, specific (chemical) sensors of process analytics are needed, preferably without lengthy calibration or spectroscopic model development. An excellent example of a "direct" analytical method is online nuclear magnetic resonance (NMR) spectroscopy. NMR spectroscopy meets the requirements of a direct analytical method because of the direct correlation between the signal area in the spectrum ("counting" the nuclear spins) and the analyte amount of substance concentrations. It is also extremely linear over the concentration range. With the availability of compact benchtop NMR instruments, it is now possible to bring NMR spectroscopy directly into the field, in close proximity to specialized laboratory facilities, pilot plants, and even industrial-scale production facilities. The first systems are in TRL 8 (Qualified System with Proof of Functionality in the Field). The presentation will discuss the many building blocks of online nuclear magnetic resonance spectroscopy, from flow cells to automated data analysis. T2 - SFB 1527 HyPERiON “High Performance Compact Magnetic Resonance“ Online Seminar CY - Karlsruhe, Germany DA - 06.07.2023 KW - Online NMR Spectroscopy KW - Process Monitoring KW - Reaction Monitoring KW - Industry 4.0 KW - Automation KW - Modular Production PY - 2023 AN - OPUS4-57862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Sensors, Analytics and Certified Reference Materials safeguarding the quality infrastructure in the hydrogen economy N2 - The prerequisites for a successful energy transition and the economic use of hydrogen as a clean green energy carrier and for H2 readiness are a rapid market ramp-up and the establishment of the required value chains. Reliable quality and safety standards for innovative technologies are the prerequisite for ensuring supply security, for environmental compatibility and sustainable climate protection, for building trust in these technologies and thus enable product and process innovations. With the Competence Centre "H2Safety@BAM", BAM is creating the safety-related prere-quisites for the successful implementation of hydrogen technologies at national as well as European level. BAM uses decades of experience in dealing with hydrogen technologies to develop the necessary quality and safety standards. The presentation will draw a bow from the typical basic tasks of BAM in the field of competence "Sensors, analytics and certified reference materials", such as maintenance and dissemination of the national gas composition standards for calorific value determination as Designated Institute for Metrology in Chemistry within the framework of the Metre Convention, to the further development of measurement and sensor technology for these tasks. For the certification of reference materials, a mostly slow and time-consuming but solid reference analysis is common. With hydrogen and its special properties, completely new requirements are added. In addition, fast and simple online analysis is required for process control, for example to register quality changes, e.g., during load changes or refuelling processes. T2 - Indo-German International Conference on Metrology for the Deployment of Green Hydrogen and Renewable Fuels in India CY - Online meeting DA - 04.04.2022 KW - Quality Infrastructure KW - Gas Reference Material KW - Hydrogen KW - Energy Gases KW - Sensors KW - Hydrogen Storage Materials PY - 2022 UR - https://www.imeko-gh2fuels.ptb.de/ AN - OPUS4-54596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Integrated and networked systems and processes – A perspective for digital transformation of our chemical and pharmaceutical production N2 - Chemical and pharmaceutical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. The potential of digital technologies belongs to these. A current approach uses flexible and modular chemical production units, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. At the same time, we need to move towards knowledge-based production that takes into account all essential equipment, process and control data from plants and laboratories and makes valuable expertise available and transferable. The potential of data from production together with its contextual information is often not yet consistently used today for a comprehensive understanding of production. By giving examples this paper outlines a possible more holistic approach to digitalisation and the use of machine-based methods in the production of specialty chemicals and pharmaceuticals through the introduction of integrated and networked systems and processes. T2 - GDCh Science Forum 2021 - GDCh Wissenschaftsforum 2021 CY - Online meeting DA - 29.08.2021 KW - Process analytical technology KW - Online NMR spectroscopy KW - Process industry KW - Industry 4.0 KW - Digital transformation KW - Autonomous chemistry PY - 2021 AN - OPUS4-53171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Integrated and Networked Systems and Processes - How NMR Spectroscopy Can Transform our Chemical and Pharmaceutical Production N2 - Chemical and pharmaceutical companies need to find new ways to survive successfully in a changing environment, while finding more flexible ways of product and process development to bring their products to market faster - especially high-value, high-end products such as fine chemicals or pharmaceuticals. This is complicated by changes in value chains along a potential circular economy. One current approach is flexible and modular chemical production units that use multi-purpose equipment to produce various high-value products with short downtimes between campaigns and can shorten time-to-market for new products. Online NMR spectroscopy will play an important role for plant automation and quality control, as the method brings very high linearity, matrix independence and thus works almost calibration-free. Moreover, these properties ideally enable automated and machine-aided data analysis for the above-mentioned applications. Using examples, this presentation will outline a possible more holistic approach to digitalization and the use of machine-based processes in the production of specialty chemicals and pharmaceuticals through the introduction of integrated and networked systems and processes. T2 - 43rd FGMR Annual Discussion Meeting CY - Karlsruhe, Germany DA - 12.09.2022 KW - Digital Transformatioin KW - Process Industry KW - Pharmaceuticals KW - Specialty Chemicals KW - Automation KW - Online NMR Spectroscopy KW - Industry 4.0 PY - 2022 AN - OPUS4-55715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Next Generation Automation - Arbeitskreis 3.7: Smarte Sensorik, Aktorik und Kommunikation N2 - Der AK 3.7 ist ein "erweiterter" AK und je zur Hälfte mit NAMUR-Vertretern und Vertretern der Geräte- und Softwarehersteller besetzt. Er wurde ins Leben gerufen, um Begrifflichkeiten der digitalen Transformation aufzugreifen, wie etwa Smarte Sensorik, Sensordatenfusion, Schwarmsensorik oder Softsensorik. Eine erste Aufgabe bestand darin, einige exemplarische Anwendungsfälle der Nutzung smarter Eigenschaften von Feldgeräten sowie deren zukünftige Kommunikationsmöglichkeiten sowohl mit Bezug auf Bestandsanlagen als auch mit Blick auf einen potentiellen Technologiewechsel zu betrachten. Neuer Scope des AK 3.7 ist eine "Next Generation Automation" um einen potentiellen Technologiewechsel rechtzeitig vorauszudenken. Dieses erfolgt unter vollständiger gedanklicher Trennung von heutiger Automatisierung und auch vom NOA-Konzept. Ebenso wird ein Technologiewechsel in der Produktion der Prozessindustrie (wahrscheinlich modulbasiert) postuliert. Ziel des AK 3.7 wird es in Zukunft sein, diese Anforderungen an smarte Feldgeräte aufzugreifen und gemeinsam mit den thematisch überlappenden Interessenskreisen in Standards zu übersetzen. KW - Prozessindustrie KW - Automation KW - NAMUR KW - Sensorik KW - Aktorik KW - Kommunikation PY - 2021 SN - 2190-4111 SN - 2364-3137 IS - 9 SP - 73 PB - Vulkan Verlag CY - Essen AN - OPUS4-54336 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Metrologie für fortschrittliche Wasserstoffspeicherlösungen – Das EU-Projekt MefHySto T1 - Metrology for advanced hydrogen storage solutions – The EU project MefHySto N2 - Das europäische Projekt MefHySto befasst sich mit dem Bedarf an großmaßstäblichen Energiespeichern, die für eine Umstellung der Energieversorgung auf erneuerbare Energien erforderlich sind. Eine solche Speicherung ist entscheidend, um Energie zu Spitzenzeiten zu liefern, wenn die erneuerbaren Energiequellen schwanken. Eine mögliche Lösung für die Energiespeicherung ist der großtechnische Einsatz von Wasserstoff. Die messtechnische Rückführbarkeit in der Energieinfrastruktur für die Wasserstoffspeicherung ist dann von entscheidender Bedeutung und eine bessere Kenntnis der chemischen und physikalischen Eigenschaften von Wasserstoff sowie rückführbare Messungen und validierte Techniken unverzichtbar. N2 - The European project MefHySto addresses the need of large-scale energy storage, which is required for a shift to renewable energy supply. Such storage is mandatory to supply energy at peak times when renewable sources fluctuate. A possible solution for energy storage is large-scale use of hydrogen. Metrological traceability in the energy infrastructure for hydrogen storage is then crucial and a better knowledge of the chemical and physical properties of hydrogen as well as traceable measurements and validated techniques are indispensable. KW - Wasserstoff KW - Wasserstoffspeicher KW - Infrastruktur KW - Metrologie KW - PEM-Wasserelektrolyse KW - Rückverstromung KW - Lastwechsel KW - Wasserstoff-Qualität PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556451 UR - https://gwf-gas.de/forschung-entwicklung/metrologie-fuer-fortschrittliche-wasserstoffspeicherloesungen-das-eu-projekt-mefhysto/ SN - 2366-9594 VL - 163 IS - 9 SP - 38 EP - 45 PB - Vulkan Verlag CY - Essen AN - OPUS4-55645 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Meyer, Klas A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions towards variable temperature shielding for compact NMR instruments N2 - The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature. KW - Benchtop NMR KW - Continuous Processes KW - Inline Analytics KW - Model Predictive Control KW - Process Analytical Tecnology KW - Temperature Control PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579219 DO - https://doi.org/10.1002/mrc.5379 SN - 1097-458X SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-57921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Liehr, Sascha A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Müller, S. A1 - Maiwald, Michael A1 - Kowarik, Stefan T1 - Artificial neural networks for quantitative online NMR spectroscopy N2 - Industry 4.0 is all about interconnectivity, sensor-enhanced process control, and data-driven systems. Process analytical technology (PAT) such as online nuclear magnetic resonance (NMR) spectroscopy is gaining in importance, as it increasingly contributes to automation and digitalization in production. In many cases up to now, however, a classical evaluation of process data and their transformation into knowledge is not possible or not economical due to the insufficiently large datasets available. When developing an automated method applicable in process control, sometimes only the basic data of a limited number of batch tests from typical product and process development campaigns are available. However, these datasets are not large enough for training machine-supported procedures. In this work, to overcome this limitation, a new procedure was developed, which allows physically motivated multiplication of the available reference data in order to obtain a sufficiently large dataset for training machine learning algorithms. The underlying example chemical synthesis was measured and analyzed with both application-relevant low-field NMR and high-field NMR spectroscopy as reference method. Artificial neural networks (ANNs) have the potential to infer valuable process information already from relatively limited input data. However, in order to predict the concentration at complex conditions (many reactants and wide concentration ranges), larger ANNs and, therefore, a larger Training dataset are required. We demonstrate that a moderately complex problem with four reactants can be addressed using ANNs in combination with the presented PAT method (low-field NMR) and with the proposed approach to generate meaningful training data. KW - Online NMR spectroscopy KW - Real-time process monitoring KW - Artificial neural networks KW - Automation KW - Process industry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507508 DO - https://doi.org/10.1007/s00216-020-02687-5 SN - 1618-2642 VL - 412 IS - 18 SP - 4447 EP - 4459 PB - Springer CY - Berlin AN - OPUS4-50750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kern, Simon A1 - Liehr, Sascha A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Müller, S. A1 - Maiwald, Michael A1 - Kowarik, Stefan T1 - Training data of quantitative online NMR spectroscopy for artificial neural networks N2 - Data set of low-field NMR spectra of continuous synthesis of nitro-4’-methyldiphenylamine (MNDPA). 1H spectra (43 MHz) were recorded as single scans. Two different approaches for the generation of artificial neural networks training data for the prediction of reactant concentrations were used: (i) Training data based on combinations of measured pure component spectra and (ii) Training data based on a spectral model. Synthetic low-field NMR spectra First 4 columns in MAT-files represent component areas of each reactant within the synthetic mixture spectrum. Xi (“pure component spectra dataset”) Xii (“spectral model dataset”) Experimental low-field NMR spectra from MNDPA-Synthesis This data set represents low-field NMR-spectra recorded during continuous synthesis of nitro-4’-methyldiphenylamine (MNDPA). Reference values from high-field NMR results are included. KW - NMR spectroscopy KW - Real-time process monitoring KW - Artificial neural networks KW - Online NMR spectroscopy KW - Automation KW - Process industry PY - 2020 DO - https://doi.org/10.5281/zenodo.3677139 PB - Zenodo CY - Geneva AN - OPUS4-50456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Bienert, M. A1 - Gugin, Nikita A1 - Emmerling, Franziska A1 - Maiwald, Michael T1 - A database to select affordable MOFs for volumetric hydrogen cryoadsorption considering the cost of their linkers N2 - Physical adsorption at cryogenic temperature (cryoadsorption) is a reversible mechanism that can reduce the pressure of conventional compressed gas storage systems. Metal–organic framework (MOF) materials are remarkable candidates due to the combination of high specific surface area and density which, in some cases, provide a high volumetric storage capacity. However, such extensive use of MOFs for this application requires the selection of affordable structures, easy to produce and made from feasible metallic and organic components. Herein, we introduce a MOF database detailing the crystallographic and porous properties of 3600 existing MOFs made from industrially relevant metals and their organic composition. The comparison of the available minimum costs of linkers allowed the creation of a database to select affordable structures with high potential for volumetric hydrogen storage by cryoadsorption, considering their composition based on individual or mixed building blocks. A user inter� face, available online, facilitates the selection of MOFs based on the properties or names of structures and linkers. KW - MOF´s PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583619 DO - https://doi.org/10.1039/d3ma00315a VL - 4 IS - 18 SP - 4226 EP - 4237 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Maiwald, Michael A1 - Villajos Collado, José Antonio T1 - Metal-organic framework compounds as hydrogen storage materials to enhance the safety, capacity, and efficiency of hydrogen refueling stations N2 - Gas adsorption is based on physical properties between gases and solid materials, enriching the surface with packed gas molecules with a higher density than in the bulk phase. For using this mechanism as a gas storage strategy, highly porous materials are necessary since large surfaces in small volumes can provide the storage system with a higher density than the gas phase. In the case of hydrogen gas, the interaction forces with solid surfaces are generally low at room temperature but can increase considerably at low operating temperatures. As a counterpart, the storage pressure is considerably lower than that necessary by traditional gas compression. Amongst ultra-porous adsorbent materials for hydrogen cryoadsorption, metal-organic frameworks (MOFs) are a group of remarkable solids made from metallic nodes linked by organic molecules exhibiting a wide variety of composition, geometry, porous properties, and chemical functionality. The scientific community focused in the last years on enhancing both the specific area of materials and the interaction energy to extend the storage properties of cryoadsorption to ambient-temperature and use it as hydrogen storage mechanisms in vehicles. However, the found difficulty in achieving ultra-porous structures with high-enough interaction energies decreased this research interest in the last years. However, for a stationary application like hydrogen refueling stations, where space and weight are not such limits as in vehicles, cryoadsorption can still be considered a feasible candidate for hydrogen storage. Cryoadsorption is the only fast and fully reversible approach to store hydrogen at similar density values as compressed gas. Cryogenic operation is a technological challenge, but first, liquid nitrogen is cheap, and second, it is less energy-demanding than hydrogen liquefaction, which is indeed considered as feasible for transportation and storage. Cryoadsorption involves lower pressure than compressed gas, increasing safety in the storage facilities, but additional research on the construction materials properties is necessary to better understand their behavior in contact with hydrogen at cryogenic temperatures. However, the knowledge of all these mechanisms is important to identify the improvement opportunities based on, probably, the interphase between different solutions. To achieve the set project goals, this internal research report describes the work packages realised within the framework of the project. KW - Metal-organic frameworks (MOFs) KW - Hydrogen Storage KW - Reversible Hydrogen Storage KW - Hydrogen Fuelling Stations KW - Croyo-starage KW - High-pressure volumetric analyzer (HPVA) PY - 2021 SP - 1 EP - 48 CY - Berlin AN - OPUS4-53582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Dautain, O. A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Optimizing the Green Synthesis of ZIF-8 by Reactive Extrusion Using In Situ Raman Spectroscopy N2 - We report the scale-up of a batch solid synthesis of zeolitic imidazolate framework-8 (ZIF-8) for reactive extrusion. The crystalline product forms in the extruder directly under the mixture of solid 2-methylimidazole and basic zinc carbonate in the presence of a catalytic amount of liquid. The process parameters such as temperature, liquid type, feeding rate, and linker excess were optimized using the setup specifically designed for in situ Raman spectroscopy. Highly crystalline ZIF-8 with a Brunauer–Emmett–Teller (BET) surface area of 1816 m2 g–1 was quantitatively prepared at mild temperature using a catalytic amount of ethanol and a small excess of the linker. Finally, we developed a simple and comprehensive approach to evaluating the environmental friendliness and scalability of metal–organic framework (MOF) syntheses in view of their large-scale production. KW - Mechanochemistry KW - In situ Raman KW - Large-scale processing KW - Metal−organic frameworks KW - Twin-screw extrusion (TSE) PY - 2023 DO - https://doi.org/10.1021/acssuschemeng.2c07509 SN - 2168-0485 VL - 11 IS - 13 SP - 5175 EP - 5183 PB - ACS Publications AN - OPUS4-57366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balderas-Xicohtencatl, R. A1 - Villajos Collado, José Antonio A1 - Casabán, J. A1 - Wong, D. A1 - Maiwald, Michael A1 - Hirscher, M. T1 - ZIF‑8 Pellets as a Robust Material for Hydrogen Cryo-Adsorption Tanks N2 - Cryoadsorption on the inner surface of porous materials is a promising solution for safe, fast, and reversible hydrogen storage. Within the class of highly porous metal−organic frameworks, zeolitic imidazolate frameworks (ZIFs) show high thermal, chemical, and mechanical stability. In this study, we selected ZIF-8 synthesized mechanochemically by twin-screw extrusion as powder and pellets. The hydrogen storage capacity at 77 K and up to 100 bar has been analyzed in two laboratories applying three different measurement setups showing a high reproducibility. Pelletizing ZIF-8 increases the packing density close to the corresponding value for a single crystal without loss of porosity, resulting in an improved volumetric hydrogen storage capacity close to the upper limit for a single crystal. The high volumetric uptake combined with a low and constant heat of adsorption provides ca. 31 g of usable hydrogen per liter of pellet assuming a temperature−pressure swing adsorption process between 77 K − 100 bar and 117 K − 5 bar. Cycling experiments do not indicate any degradation in storage capacity. The excellent stability during preparation, handling, and operation of ZIF-8 pellets demonstrates its potential as a robust adsorbent material for technical application in pilot- and full-scale adsorption vessel prototypes. KW - Hydrogen adsorption storage KW - Metal−organic frameworks KW - ZIF-8 KW - Cryoadsorption KW - Hydrogen Storage KW - MefHySto PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569473 DO - https://doi.org/10.1021/acsaem.2c03719 SN - 2574-0962 SP - 1 EP - 8 PB - ACS Publications CY - Washington DC AN - OPUS4-56947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Impulse zur Nutzung smarter Sensoren und Aktoren - Aktuelle Aktivitäten und Anwendungsbeispiele N2 - Eine der vielen Vorzüge smarter Sensoren und Aktoren ist die Bereitstellung zusätzlicher Informationen, auf die zukünftig neben bereits verwendeten Signalen zugegriffen werden kann. In verschiedenen Arbeitskreisen wird dieser Themenbereich im wechselseitigen Austausch mit Geräte- und Softwareherstellern und Forschungseinrichtungen vorangetrieben. In diesem Beitrag wird der aktuelle Stand der Diskussionen anhand von Beispielen erläutert. KW - Smarter Sensor KW - Smarter Aktor KW - Digitale Transformation KW - Prozessindustrie KW - NAMUR PY - 2020 DO - https://doi.org/10.17560/atp.v62i1-2.2468 SN - 2364-3137 VL - 62 IS - 1-2 SP - 72 EP - 79 PB - Vulkan-Verlag GmbH (Verlag) CY - Essen AN - OPUS4-50443 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. Recently, AI procedures have also been successfully used for NMR data evaluation. In order to overcome the typical limitation of too small data sets from process developments, a new method was tested, which allows a physically motivated multiplication of the available reference data together with context information in order to obtain a sufficiently large data set for the training of machine learning algorithms. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Compact NMR: Perspectives for (Bio)process Monitoring CY - Online meeting DA - 14.10.2020 KW - Process Industry KW - Real-time Process Monitoring KW - NMR Spectroscopy KW - Indirect Hard Modelling KW - Modular Production PY - 2020 AN - OPUS4-51430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Aktuelles zur Technologie-Roadmap "Prozess-Sensoren 4.0" N2 - Die auf der NAMUR Hauptsitzung 2015 vorgestellte Technologie-Roadmap „Prozess-Sensoren 4.0“ zeigt die damaligen Anforderungen an Prozess-Sensoren sowie an deren Kommunikations-fähigkeiten auf. Wir berichten über die Umsetzungen der damaligen Ideen/Thesen aus heutiger Sicht und blicken nach vorn. T2 - Workshop NAMUR-Hauptsitzung 2020 CY - Online meeting DA - 05.11.2020 KW - Prozessindustrie KW - Technologie-Roadmap "Prozess-Sensoren 4.0" KW - NAMUR KW - Automation KW - Prozessanalytik KW - Sensoren PY - 2020 AN - OPUS4-51523 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Interlaboratory comparison of benchtop NMR spectrometers – Purities at 200 and 10 mmol/L N2 - Due to its advantages of being a direct comparison method, quantitative NMR spectroscopy (qNMR) becomes more and more popular in industry. While conventional high-field NMR systems are often associated with high investment and operational costs, the upcoming market of permanent-magnet based benchtop NMR systems show a considerable option for a lot of applications. The mobility of these systems allows to bring them more closely to the real production environment, e.g. for at-line quality control. In this work we present an interlaboratory comparison study investigating the qNMR performance of state-of-the-art benchtop NMR spectrometers. Therefore, BAM prepared two samples of a mixture of NMR reference standards tetramethylbenzene (TMB) and tetrachloronitrobenzene (TCNB) at concentration levels of 200 mM and 10 mM. These “ready-to-use” samples were sent to participant laboratories, which performed analysis on their benchtop NMR equipment of different vendors and fields from 43 to 80 MHz. Raw data was reported back and further investigated by using different data analysis methods at BAM. After this very first qNMR comparison study of benchtop NMR spectrometers show promising results, following studies are planned to cover more parts of the qNMR process, e.g. sample preparation and weighing, but also data analysis, as commonly done in similar studies for high-field NMR spectroscopy in industry and metrology. T2 - The United States Pharmacopeial Convention (USP) Emerging Technologies Workshop & Roundtable CY - Online meeting DA - 17.11.2020 KW - Quantitative NMR Spectroscopy KW - QNMR KW - Purity KW - Interlaboratory Comparison KW - Low-field NMR Spectroscopy PY - 2020 UR - https://www.cvent.com/events/emerging-technologies-workshop-roundtable-quantitative-nmr-and-digital-data-applications-overview-an/event-summary-f128e4bfbedc48d6946f554ea719d6b1.aspx?dvce=1 AN - OPUS4-51526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Andrea A1 - Broszies, T. A1 - Ostermann, Markus A1 - Vogdt, F.U. A1 - Maiwald, Michael T1 - Unterscheidung von Mineralwollen mit Nahinfrarot-Spektroskopie (NIRS) T1 - Differentiation of mineral wool by near-infrared spectroscopy (NIRS) N2 - Für die Rückführung von aus Rückbauprojekten anfallender künstlicher Mineralwolle in ihren Herstellungsprozess ist es notwendig, Stein- und Glaswolle zu unterscheiden und voneinander getrennt zu halten. Zu diesem Zweck wurde das Potential von NIR-Spektroskopie (NIRS) für einen werks- oder baustellenseitigen Einsatz getestet. NIRS wird aufgrund kurzer Messzeiten, minimaler Probenvorbereitung und hoher Robustheit der Spektrometer häufig in der Prozessanalytik eingesetzt. Untersucht wurden 70 verschiedene Mineralwollen, wobei sich der Probenumfang sowohl aus werksneuen Proben mit Herstellerangaben als auch unbekannten Proben ohne Spezifikation zusammensetzen, die auf verschiedenen Baustellen in den Jahren 2016–2017 entnommen oder von Deponien zur Verfügung gestellt worden waren. Als Referenzmethode wurde die Röntgenfluoreszenzanalyse verwendet, um den Mineralwolle-Typ über den Elementgehalt nach VDI 3492 zu identifizieren. Mit Hilfe eines multivariaten Datenanalyseverfahrens konnte schließlich eine Methode etabliert werden, die eine zuverlässige Identifikation von unbekannten Mineralwollen anhand deren NIR-Spektren als Stein- bzw. Glaswolle ermöglicht. N2 - For the recirculation of artificial mineral wool resulting from deconstruction projects to the production process, it is necessary to distinguish between rock wool and glass wool. For this purpose, the potential of NIR spectroscopy (NIRS) was tested for the application directly on construction site or in factory. NIRS is often used in process analytics due to short measurement times, minimal sample preparation and high robustness of the spectrometers. In this study 70 mineral wool samples were examined, including both new samples with manufacturer`s specifications and unknown samples without specifications, which were taken at various German construction sites between 2016 and 2017 or which were provided by landfills. X-ray fluorescence spectroscopy was used as a reference method to identify the mineral wool type via the element content according to VDI 3492. With the help of a multivariate data analysis method finally a method was established, which allows a reliable identification of unknown mineral wool based on its NIR spectra as rock or glass wool. KW - Recycling KW - NIR KW - Baustoffe KW - Chemometrie PY - 2020 VL - 95 IS - 12 SP - 463 EP - 472 PB - VDI Fachmedien GmbH & Co. KG CY - Düsseldorf AN - OPUS4-51851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Künstliche Neuronale Netze für quantitative Online-Spektroskopie in der Prozessindustrie – Lästige Modellbildung ade? N2 - Bei Industry 4.0 dreht sich alles um Interkonnektivität, sensorgestützte Prozesssteuerung und datengesteuerte Systeme. Prozessanalysentechnik (PAT) wie die Online-Kernresonanzspektroskopie (NMR) gewinnt zunehmend an Bedeutung, da sie zur Automatisierung und Digitalisierung in der Produktion beiträgt. Eine klassische Auswertung von Prozessdaten und deren Umsetzung in Wissen ist jedoch bisher in vielen Fällen aufgrund der unzureichend großen verfügbaren Datensätze nicht möglich oder nicht wirtschaftlich. Bei der Entwicklung eines automatisierten Verfahrens für die Prozesskontrolle stehen manchmal nur die Basisdaten einer begrenzten Anzahl von Batch-Versuchen aus typischen Produkt- und Prozessentwicklungskampagnen zur Verfügung. Diese Datensätze sind jedoch nicht groß genug, um maschinengestützte Verfahren zu trainieren. Um diese Einschränkung zu überwinden, wurde ein neues Verfahren entwickelt, das eine physikalisch motivierte Multiplikation der verfügbaren Referenzdaten erlaubt, um einen ausreichend großen Datensatz für das Training von maschinellen Lernalgorithmen zu erhalten. Das zugrundeliegende Beispiel einer chemischen Synthese wurde spektroskopisch verfolgt und mit der neuen Methode sowie mit einem physikalisch basierten Modell analysiert, wobei sowohl eine anwendungsrelevante Niederfeld-NMR als auch eine Hochfeld-NMR-Spektroskopie als Referenzmethode verwendet wurde. Künstliche neuronale Netze (ANNs) haben das Potenzial, bereits aus relativ begrenzten Eingabedaten wertvolle Prozessinformationen abzuleiten. Um jedoch die Konzentration unter komplexen Bedingungen (viele Edukte und weite Konzentrationsbereiche) vorherzusagen, sind größere ANNs und damit ein größerer Trainingsdatensatz erforderlich. Wir zeigen, dass ein mäßig komplexes Problem mit vier Edukten unter Verwendung von ANNs in Kombination mit der vorgestellten PAT-Methode (Niederfeld-NMR-Spektroskopie) und mit dem vorgeschlagenen Ansatz zur Erzeugung aussagekräftiger Trainingsdaten bewältigt werden kann. T2 - 16. Kolloquium Arbeitskreis Prozessanalytik CY - Online meeting DA - 23.11.2020 KW - Prozessindustrie KW - Online-NMR-Spektroskopie KW - Industrie 4.0 KW - Künstliche Neuronale Netze KW - Prozessanalytik KW - Digitale Transformation PY - 2020 AN - OPUS4-51647 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Laboratory accreditation as a reliable indicator of technical competence for testing, calibration and measurement organizations – An introduction to ISO/IEC 17025 using the example of qNMR spectroscopy N2 - ISO/IEC 17025 is the worldwide quality standard for testing and calibration laboratories. It is the basis for accreditation by an accreditation body. The current version was published in 2018. Implementing ISO/IEC 17025 as part of laboratory quality initiatives offers both laboratory and business benefits, such as expanding the potential customer base for testing and/or calibration, increasing the reputation and image of the laboratory at national and international level, continuous improvement of the data quality and the effectiveness of the laboratory or creation of a good basis for most other quality systems in the laboratory sector, such as GxP. The main difference between a proper approach to analysis and a formal accreditation is shown in a targeted documentation, especially on the qualification of the personnel, the test equipment and the validation of the analytical methods. Using quantitative NMR spectroscopy as an example, it is shown how accreditation can be carried out and what documentation is required. In our case, we have described the procedure in an SOP ("Determination of the quantitative composition of simple mixtures of structurally known compounds with 1H-NMR spectroscopy") and supported it with a modular system of organizational and equipment SOPs. The special feature is that the accredited method is independent for the choice of the analyte and the matrix and therefore it is possible to operate with a single validated method. In our case, we have proposed three quality levels ("leagues") with different levels of analytical effort, which differ in their measurement uncertainty, in order to simplify the workflow and analysis design. T2 - 9th Annual Practical Applications of NMR in Industry Conference (PANIC) CY - Online meeting DA - 17.10.2021 KW - Quantitative NMR Spectroscopy KW - qNMR KW - Accreditation KW - ISO 17025 KW - ISO/IEC 17025 KW - PANIC PY - 2021 AN - OPUS4-53564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fricke, F. A1 - Mahmood, S. A1 - Hoffmann, J. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, Stefan A1 - Westerdicky, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are critical components of every industrial chemical process as they provide information on the concentrations of individual compounds and by-products. These processes are carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been developed to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra to train an ANN with better prediction performance and speed than state-of-theart analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a possible strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. T2 - 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) CY - Online meeting DA - 01.02.2021 KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy PY - 2021 UR - www.date-conference.com SN - 978-3-9819263-5-4 SP - 615 EP - 620 PB - Research Publishing AN - OPUS4-52180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oudwater, R. J. A1 - van Wijk, J. I. T. A1 - Persijn, S. A1 - Wessel, R. M. A1 - van der Veen, A. M. H. A1 - Mace, T. A1 - Sutour, C. A1 - Couette, J. A1 - Milton, M. A1 - Harling, A. A1 - Vargha, G. A1 - Uprichard, I. A1 - Haerri, H.-P. A1 - Niederhauser, B. A1 - Tuma, Dirk A1 - Maiwald, Michael A1 - Boissière, Claudia T1 - Final report on EURAMET QM-S8: Analysis of impurities in pure and balance gases used to prepare primary standard gas mixtures by the gravimetric method N2 - This project concerns the purity analysis of nitrogen as used in reference gas mixture preparation. This project was carried out without adding impurities to the gas used for this comparison, and is therefore more representative to evaluate the analysis of CO, CO2, CH4, O2, Ar and H2O impurities in high purity nitrogen. The analysis of the amount–of–substance fraction water was optional. Two 50 litre high purity nitrogen cylinders were purchased from a well-qualified supplier of specialty gases. The listed components were expected to be present in the pure nitrogen at the target levels as a result of the purification of the nitrogen. From the start of this comparison it was clear that the comparison may not lead to reference values for the constituents analysed. The results indicate that analyses of high purity gases are often limited by the limits of detection of analytical equipment used. The reports of the participating laboratories also indicate that there is no agreed method of determination of the uncertainty on a detection Limit value. The results provide useful information on the Performance of participants. For all analysed components there is reasonable agreement in results for LNE, VSL, Metas and NPL. For BAM only the Argon result is in agreement. KW - Gas analysis KW - Nitrogen KW - Purity analysis PY - 2013 DO - https://doi.org/10.1088/0026-1394/50/1A/08023 SN - 0026-1394 SN - 1681-7575 VL - 50 IS - 08023 SP - 1 EP - 58 PB - Institute of Physics Publishing CY - Bristol AN - OPUS4-35896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - van der Hout, J. W. A1 - van der Veen, A. M. H. A1 - Ziel, P. R. A1 - Kipphardt, Heinrich A1 - Tuma, Dirk A1 - Maiwald, Michael A1 - Fernández, T. E. A1 - Gómez, C. A1 - Cieciora, D. A1 - Ochman, G. A1 - Dias, F. A1 - Silvino, V. A1 - Macé, T. A1 - Sutour, C. A1 - Marioni, F. A1 - Ackermann, A. A1 - Niederhauser, B. A1 - Fükő, J. A1 - Büki, T. A1 - Szilágyi, Z. N. A1 - Tarhan, T. A1 - Engin, E. T1 - International Comparison Euramet.QM-K111 – Propane in Nitrogen N2 - This key comparison aims to assess the core capabilities of the participants in gas analysis. Such competences include, among others, the capabilities to prepare Primary Standard gas Mixtures (PSMs), perform the necessary purity analysis on the materials used in the gas mixture preparation, the verification of the composition of newly prepared PSMs against existing ones, and the capability of calibrating the composition of a gas mixture. According to the Strategy for Key Comparisons of the Gas Analysis Working Group, this key comparison is classified as an RMO track A key comparison. The artefacts were binary mixtures of propane in nitrogen at a nominal amount-of-substance fraction level of 1000 μmol/mol. The values and uncertainties from the gravimetric gas mixture preparation were used as key comparison reference values (KCRVs). Each transfer standard had its own KCRV. The results are generally good. All results are within ± 1 % of the KCRV. KW - EURAMET.QM-K111 KW - Propane in nitrogen PY - 2017 DO - https://doi.org/10.1088/0026-1394/54/1A/08020 SN - 0026-1394 VL - 54 IS - Technical Supplement SP - 08020, 1 EP - 34 PB - IOP Science AN - OPUS4-44471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales ondemand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algorithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16 inch polymer tubing working as a flow cell. Single scan 1H spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in non-deuterated solvents while its time-resolved behaviour was characterised with step tracer experiments Through the application of spectral modeling the signal area for each reactant can be deconvoluted in the online spectra and thus converted to the respective concentrations or molar ratios. The signals which were suitable for direct integration were used herein for comparison purposes of both methods. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Online NMR Spectroscopy KW - Process Analytical Technology KW - Click Chemistry KW - Reaction Monitoring KW - Process control KW - Indirect Hard Modeling KW - Spectral Modeling PY - 2017 SP - 156 EP - 157 CY - Frankfurt a. M. AN - OPUS4-40232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Referenzgase für die Analytik - zwischen Referenzmaterial und Klimawandel T2 - ANAKON 2009 CY - Berlin, Germany DA - 2009-03-17 PY - 2009 AN - OPUS4-20679 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Panne, Ulrich A1 - Rademann, K. A1 - Maiwald, Michael T1 - Quantitative NMR Spektroskopie unter Druck - Anwendungen an fluiden und gasförmigen technischen Mischungen N2 - Die quantitative NMR-Spektroskopie (qNMR) gewinnt in den letzten Jahren immer mehr an Bedeutung, speziell hinsichtlich der Anwendung auf komplexe Fragestellungen der analytischen Chemie. Ein großer Vorteil dieser Methode ist die Möglichkeit der Relativquantifizierung durch das „Zählen von Kernspins" in der Probe. Unter der Voraussetzung eines korrekt ausgeführten NMR-Experiments ist so der direkte Vergleich von Signalflächen im Spektrum möglich, ohne dass zuvor zwingend eine Kalibrierung notwendig ist. T2 - 8. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 23.02.2014 PY - 2014 SN - 978-3-9816380-1-1 SP - 20 AN - OPUS4-32090 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kipphardt, Heinrich A1 - Tuma, Dirk A1 - Khanipour, Peyman A1 - Maiwald, Michael T1 - Voll normal - Normen in der Gasanalytik N2 - In dieser Arbeit werden die Grundlagen der Normung, die Entstehung einer Norm und die für die Gasanalytik relevanten Normungsgremien kurz dargestellt. Dazu werden die wichtigsten Normen zur Gasanalytik entlang des analytischen Prozesses gruppiert und aufgeführt. Schließlich wird als Anwendungsbeispiel aus der eigenen Praxis der Prozess von der Herstellung bis zur Zertifizierung eines Kalibriergases beschrieben. KW - Zertifikat KW - Regel- und Messtechnik KW - Normung KW - Gasanalytik KW - Gasgualität KW - Gasreinheit PY - 2022 SN - 2366-9594 VL - 10 SP - 73 EP - 80 PB - Vulkan Verlag CY - Essen AN - OPUS4-56083 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Already producing or still assembling? – Perspectives towards modular production and quality control in a digitized process industry N2 - The CLEAN ENERGY Flagship is an initiative designed to utilize recent game changing developments in digital, materials and manufacturing technologies to catalyze a radical paradigm shift towards clean, reliable, efficient and cost-optimal energy. Unifying and drastically accelerating radically new energy material design, processing and integration across the entire value chain addressing energy production, conversion, storage and systems. CLEAN ENERGY participants are all distinguished research organisations that each benefit from their own industry networks and contacts with regions and state-level activities and have a long history of collaborating with each other (for 10 years now under the umbrella of EERA) within a European collaborative framework. Through EERA, CLEAN ENERGY aims to become a crucial partner in the SET-Plan, supporting long-lasting approaches through its established networks and internal collaborations. T2 - Clean Energy Workshop on Autonomous Materials Development Platforms CY - Brussels, Belgium DA - 02.10.2018 KW - Digitization KW - Energy production KW - Energy storage KW - Energy systems KW - Clean energy technology PY - 2018 AN - OPUS4-46135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Maiwald, Michael T1 - Analytical Sciences an der BAM N2 - Die Bundesanstalt für Materialforschung und -prüfung (BAM) ist eine wissenschaftlich technische Bundesoberbehörde im Geschäftsbereich des Bundesministeriums für Wirtschaft und Energie (BMWi), die über einen gesetzlichen Auftrag für die Sicherheit in Technik und Chemie verfügt und auf nahezu 150 Jahre zurückblicken kann. Vor diesem Hintergrund forscht, entwickelt, und prüft die BAM in den fünf Themenfeldern Energie, Infrastruktur, Umwelt, Material und Analytical Sciences mit einer unikalen Vielfalt an analytischen Methoden. KW - BAM KW - Analytik KW - Analytical Sciences PY - 2016 SN - 0939-0065 IS - 2 SP - 6 EP - 8 AN - OPUS4-36508 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - „Prozess-Sensoren 4.0“ – Chancen für neue Automatisierungskonzepte und neue Geschäftsmodelle in der Prozessindustrie N2 - Prozess-Sensoren 4.0 vereinfachen ihre Einbindung über Plug and Play, obwohl sie komplexer werden. Sie bieten Selbstdiagnose, Selbstkalibrierung und erleichterte Parametrierung. Über die Konnektivität ermöglichen die Prozess-Sensoren den Austausch ihrer Informationen als Cyber-physische Systeme mit anderen Prozess-Sensoren und im Netzwerk. Der Aufbruch von der aktuellen Automation zum smarten Sensor hat bereits begonnen. Automatisierungstechnik und Informations- und Kommunikationstechnik (IKT) verschmelzen zunehmend. Wenn die Prozessindustrie dieses nicht definiert, tun es andere. Für die weitere Entwicklung von der Ist‐Situation zu einer Industrie-4.0-Welt in der Prozessindustrie werden mehrere Szenarien diskutiert. Diese reichen vom erleichterten Abruf sensorbezogener Daten über zusätzliche Kommunikationskanäle zwischen Sensor und mobilen Endgeräten über vollständig bidirektionale Kommunikation bis hin zur Einbindung der Cloud und des Internets in virtualisierte Umgebungen. Um zu einer störungsfreien Kommunikation aller Sensoren untereinander zu kommen, muss mindestens ein einheitliches Protokoll her, das alle Sensoren sprechen und verstehen. Der derzeit greifbarste offengelegte Standard, der moderne Kommunikationsanforderungen erfüllt, ist OPC Unified Architecture (OPC-UA). Viele halten das Sortieren der Kommunikationsstandards für eines der wesentlichen Errungenschaften von Industrie 4.0. Eine Topologie für smarte Sensoren, das Zusammenwirken mit daten- und modellbasierte Steuerungen bis hin zur Softsensorik sowie weitere Anforderungen an Sensoren sind jedoch heute noch nicht angemessen beschrieben. Wir müssen jetzt schnell die Weichen für eine smarte und sichere Kommunikationsarchitektur stellen, um zu einer störungsfreien Kommunikation aller Sensoren auf Basis eines einheitlichen Protokolls zu kommen, welches alle Sensoren ausgeben und verstehen. Aktuelle und zukünftige öffentliche Förderung von Industrie 4.0-Projekten sind eine gute Investition. Wegen der hohen Komplexität und Interdisziplinarität gelingt die Umsetzung nur gemeinsam zwischen Anwendern aus der Prozessindustrie, Software- und Geräteherstellern und Forschungsgruppen. Anwender sind gefragt, diese neue Technologie durch eine beschleunigte Validierung und Akzeptanz umzusetzen. Sie erhalten die einzigartige Chance, ihre Prozesse und Anlagen wettbewerbsfähig zu halten. Kooperativ betriebenen F&E-Zentren und gemeinsam anerkannten Applikationslaboren kommt dafür eine hohe Bedeutung zu. T2 - Tagung Industrie 4.0 - "Safety und Security - Mit Sicherheit gut vernetzt", Hochschule für Technik und Wirtschaft CY - Berlin, Germany DA - 28.04.2017 KW - Prozessanalytik KW - Prozess-Sensoren 4.0 KW - Prozessindustrie KW - Smarte Sensoren KW - Automation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-400262 AN - OPUS4-40026 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Using Smart Sensors and Modular Production Units for Sustainable and Flexible Production of High Quality Chemicals and Pharmaceuticals N2 - The talk reflects how PAT could be applied in future developments ofpharma manufacturing. It shows the benefits, increase quality, size and increasing speed of production with significant reduction of quality costs, which are possible. Using Smart Sensors and model based data evaluation methods are the key to reduce set-up times and costs. Industry 4.0 will help shape the Pharmaceutical industry of tomorrow. This is demonstrated by an example using modular production units for Continuous Manufacturing. The development of a smart online NMR analyser is shown. T2 - Pharma Talk 2017 CY - Berlin, Germany DA - 08.06.2017 KW - Process Monitoring KW - CONSENS KW - Online NMR Spectroscopy KW - Continuous Manufacturing KW - Pharmaceutical Production PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-405039 AN - OPUS4-40503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Sensor Roadmap 4.0 – Prospects towards a uniform topology for process control and smart sensor networks N2 - Smart functions of sensors simplify their use and enable plug-and-play, even though they are more complex. This is particularly important for, self-diagnostics, self-calibration and self-configuration/parameterization. Intelligent field devices, digital field networks, Internet Protocol (IP)-enabled connectivity and web services, historians, and advanced data analysis software are providing the basis for the future project “Industrie 4.0” and Industrial Internet of Things (IIoT). Important smart features include connectivity and communication ability according to a unified protocol (OPC-UA currently most widely discussed), maintenance and operating functions, traceability and compliance, virtual description to support a continuous engineering, and well as interaction capabilities between sensors. This is a prerequisite for the realization of Cyber Physical Systems (CPS) within these future automation concepts for the process industry. Therefore, smart process sensors enable new business models for users, device manufacturers, and service providers. The departure from current automation to smart sensor has already begun. Further development is based on the actual situation over several steps. Possible perspectives will be via additional communication channels to mobile devices, bidirectional communication, integration of the cloud and virtualization. The integration of virtual runtime environments can provide a more flexible topology for process control environments. The talk summarizes the currently discussed requirements to process sensors 4.0 and introduces an online NMR sensor as an example, which was developed in the EU project CONSENS. T2 - Swiss Chemical Society Fall Meeting, Symposium on PAT & Industry 4.0 CY - Bern, Switzerland DA - 21.08.2017 KW - Process Monitoring KW - Smart Sensors KW - Reaction Monitoring KW - Indirect Hard Modeling KW - Online NMR Spectroscopy KW - Industrie 4.0 PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-414683 AN - OPUS4-41468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Competence Centre H2Safety@BAM – Safeguarding the Quality Infrastructure in the Hydrogen Economy N2 - Hydrogen is a central component of the energy transition and the European Green Deal for a climate-neutral Europe. To achieve the goals defined for 2050, the EU and the German government have developed a framework for action and are making long-term investments in research, development, and the rapid implementation of innovative hydrogen technologies. With the Competence Centre "H2Safety@BAM", BAM is creating the safety-related prerequisites for the successful implementation of hydrogen technologies at national as well as European level. To this end, BAM conducts research, testing and consulting in a holistic and inter-disciplinary manner under one roof – in the Competence Centre H2Safety@BAM. The activities of the competence centre focus on ensuring the safety of infra-structures, plants, and processes as well as innovative hydrogen transport and storage systems based on digital quality testing and the experimental testing of components and systems. It thus creates the prerequisites for the implementation and adaptation of legal framework conditions as well as for standardization. Closely related to this are investigations into the properties and compatibility of metallic materials and polymers as well as friction systems for the safe operation of components, plants, processes, and systems. This interdisciplinary and holistic approach is complemented by the development of gas analytics and suitable sensors, online measurements of gas properties in process control, test scenarios under real conditions as well as impact assessments of accidents and risk assessments and risk management systems derived from them. With its portfolio of tasks and competences, BAM builds trust in the safety and reliability of technical system solutions for hydrogen. T2 - 772. WE-Heraeus-Seminar - Metrology and Process Safety for Hydrogen Technologies & Applications CY - Bad Honnef, Germany DA - 10.10.2022 KW - H2Safety@BAM KW - Hydrogen KW - Competence Center KW - Hydrogen Strategy KW - Green Deal KW - Safety KW - Risk Assessment KW - Quality Infrastructure PY - 2022 UR - https://www.we-heraeus-stiftung.de/veranstaltungen/metrology-and-process-safety-for-hydrogen-technologies-and-applications/ AN - OPUS4-55986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Innen hui und außen pfui – Smarte Prozess-Sensoren in der gegenwärtigen Automatisierungslandschaft der Prozessindustrie N2 - Prozess-Sensoren 4.0 vereinfachen ihre Einbindung über Plug and Play, obwohl sie komplexer werden. Sie bieten Selbstdiagnose, Selbstkalibrierung und erleichterte Parametrierung. Über die Konnektivität ermöglichen die Prozess-Sensoren den Austausch ihrer Informationen als Cyber-physische Systeme mit anderen Prozess-Sensoren und im Netzwerk. Der Wandel von der aktuellen Automation zum smarten Sensor ist im vollen Gange. Automatisierungstechnik und Informations- und Kommunikationstechnik (IKT) verschmelzen zunehmend. Eine Topologie für smarte Sensoren, die das Zusammenwirken mit daten- und modellbasierte Steuerungen bis hin zur Softsensorik beschreibt gibt es heute jedoch noch nicht. Wir müssen jetzt schnell die Weichen für eine smarte und sichere Kommunikationsarchitektur stellen, um zu einer störungsfreien Kommunikation aller Komponenten auf Basis eines einheitlichen Protokolls zu kommen. Unnötiges Schnickschnack ist nicht erwünscht. Wenn die Prozessindustrie dieses nicht definiert, tun es andere. Für die weitere Entwicklung von der Ist‐Situation zu einer Industrie-4.0-Welt in der Prozessindustrie werden mehrere Szenarien diskutiert. Diese reichen vom erleichterten Abruf sensorbezogener Daten über zusätzliche Kommunikationskanäle zwischen Sensor und mobilen Endgeräten über vollständig bidirektionale Kommunikation bis hin zur Einbindung der Cloud und des Internets in virtualisierte Umgebungen. Um zu einer störungsfreien Kommunikation aller Komponenten untereinander zu kommen, muss mindestens ein einheitliches Protokoll her, das alle sprechen und verstehen. Der derzeit greifbarste offengelegte Standard, der moderne Kommunikationsanforderungen erfüllt, ist OPC Unified Architecture (OPC-UA). Viele halten das Sortieren der Kommunikationsstandards für eines der wesentlichen Errungenschaften von Industrie 4.0. Der Vortrag greift die Anforderungen der Technologie-Roadmap „Prozess-Sensoren 4.0“ auf und zeigt Möglichkeiten zu ihrer Realisierung am Beispiel eines Online-NMR-Analysators, der im Rahmen des EU-Projekts „CONSENS“ (www.consens-spire.eu) entwickelt wurde. Aktuelle und zukünftige öffentliche Förderung von Industrie 4.0-Projekten sind eine gute Investition. Wegen der hohen Komplexität und Interdisziplinarität gelingt die Umsetzung nur gemeinsam zwischen Anwendern aus der Prozessindustrie, Software- und Geräteherstellern sowie Forschungsgruppen. Anwender sind gefragt, diese neue Technologie durch eine beschleunigte Validierung und Akzeptanz umzusetzen. Sie erhalten die einzigartige Chance, ihre Prozesse und Anlagen wettbewerbsfähig zu halten. Kooperativ betriebenen F&E-Zentren und gemeinsam anerkannten Applikationslaboren kommt dafür eine hohe Bedeutung zu. T2 - 13. Dresdner Sensor Symposium CY - Dresden, Germany DA - 04.12.2017 KW - Prozessanalytik KW - Prozess-Sensoren 4.0 KW - Online-NMR-Spektroskopie KW - Continuous Manufacturing KW - Process Analytical Technology KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432056 AN - OPUS4-43205 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Already Producing or Still Calibrating? – Online NMR Spectroscopy as Smart Field Device. N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. T2 - Tackling the Future of Plant Operation - Jointly towards a Digital Process Industry CY - Barcelona, Spain DA - 13.12.2017 KW - Process Monitoring KW - Smart Sensors KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Process Analytical Technology KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434330 AN - OPUS4-43433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Die Technologie-Roadmap „Prozess-Sensoren 4.0“ – Chancen für neue Automatisierungskonzepte und neue Geschäftsmodelle N2 - Die auf der NAMUR HS 2015 vorgestellte Technologie-Roadmap „Prozess-Sensoren 4.0“ zeigt die nötigen Anforderungen an Prozess-Sensoren sowie an deren Kommunikations-fähigkeiten auf. Wir berichten über den Stand der Diskussionen im Trialog zwischen Anwendern, Software- und Geräteherstellern sowie der Forschung. Ein wichtiger Schlüssel ist die Definition einer bedarfsgerechten und einheitlichen Topologie für solche smarten Sensoren, die in einem Arbeitskreis „Smarte-Sensorik“ ohne im wechselseitigen Austausch mit Geräte- und Softwareherstellern und Forschungseinrichtungen vorangetrieben werden soll. T2 - 1. Forum Embedded Spektroskopie CY - Berlin, Germany DA - 01.12.2016 KW - Roadmap KW - Prozess-Sensoren 4.0 KW - Prozessanalytik KW - Embedded spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-385611 AN - OPUS4-38561 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Maiwald, Michael ED - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analyzers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are cur-rently not available off the rack. Recently, promising benchtop NMR instruments with acceptable performance came to market and process integrated sensors developed on basis of such laboratory instruments are on their way. T2 - 12. Kolloquium des Arbeitskreises Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - Online NMR spectroscopy KW - Modular production units KW - Low field NMR spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-383646 SP - P17, 75 EP - 77 AN - OPUS4-38364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Zientek, Nicolai A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Strangers in the Night—Smart Process Sensors in Our Current Automation Landscape N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Smart sensors enable concepts like self-diagnostics, self-calibration, and self-configuration/parameterization whenever our current automation landscape allows it. Here we summarize the currently discussed general requirements for process sensors 4.0 and introduce a smart online NMR sensor module as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). T2 - Eurosensors 2017 Conference CY - Paris, France DA - 03.09.2017 KW - Process Monitoring KW - Smart Sensors KW - CONSENS KW - Online NMR Spectroscopy KW - Mini-plant PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-415772 UR - http://www.mdpi.com/2504-3900/1/4/628 DO - https://doi.org/10.3390/proceedings1040628 VL - 1 SP - 628 EP - 631 PB - MDPI CY - Basel AN - OPUS4-41577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - How far does the light shine? A check-up of quantitative high and low field NMR spectroscopy N2 - The Royal Society of Chemistry NMR Discussion Group and Molecular Spectroscopy Group would like to invite you to the 2017 Spring Meeting, which will be held at GlaxoSmithKline (GSK), Stevenage. The theme for the meeting is “Low level detection and quantification by NMR” and different NMR technologies, including solution state NMR, solid state NMR and benchtop/low field NMR will be discussed. The presentations will cover a range of NMR related disciplines, including conventional low level detection and quantification, the use of cryoprobes, quantification of polymorphism using ssNMR and also methods for spectral simplification. Recent developments and applications of hyperpolarisation techniques, within both solution state and solid state NMR, will be presented in conjunction with the effect these sensitivity enhancements have with respect to quantification and limits of detection. T2 - NMR Discussion Group and Molecular Spectroscopy Group Spring Meeting: "Low Level Detection and Quantification by NMR Spectroscopy" CY - Stevenage, UK DA - 29.03.2017 KW - Online NMR Spectroscopy KW - Quantitative NMR Spectroscopy KW - qNMR KW - Indirect Hard Modeling KW - Limit of Detection KW - NMR Spectroscopy KW - Metrology PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395936 AN - OPUS4-39593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Design and validation of a compact NMR analyser N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - ANAKON 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Online NMR spectroscopy KW - Low-Field NMR spectroscopy KW - Modular production plants KW - Process analytical technology PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-396960 AN - OPUS4-39696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Design and validation of a compact online NMR module N2 - Monitoring chemical reactions is the key to process control. Today, mainly optical online methods are applied, which are calibration intensive. NMR spectroscopy has a high potential for direct loop process control while cutting the calibration and validation needs to an minimum and thus exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and harsh environments for advanced process monitoring and control. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Data analysis techniques are available but currently mostly used for off-line data analysis to detect the causes of variations in the product quality. This is addressed within the EU’s Research Project CONSENS by the development and integration of a smart NMR module for process monitoring. The presented NMR module is provided in a mobile explosion proof housing and involves a compact spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction), and evaluation. Such “smart sensors” provide the basis for the future project “Industrie 4.0”, and Industrial Internet of Things (IIoT), along with current requirements to process control, model based control, or soft sensing. The module transforms the acquired online spectra of various technically relevant reactions to either conventional 4‒20 mA signals as well as WiFi based OPC-UA communication protocols, which enables NMR-based advanced process control and funny discussions with plant managers along with automation and safety engineers. T2 - Small Molecule NMR Conference (SMASH) CY - Baveno, Italy DA - 17.09.2017 KW - Online NMR spectroscopy KW - CONSENS KW - Reaction monitoring KW - Process control KW - Process analytical technology KW - Indirect hard modeling KW - Industrie 4.0 KW - Smart sensors KW - SMASH PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-419473 UR - http://www.smashnmr.org/conference/program AN - OPUS4-41947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Maiwald, Michael A1 - Schukar, Marcus T1 - Beiträge der Prozessanalytik und Sensorik zur Sicherheit in Wasserstofftechnologien N2 - Intelligent sensor systems, certified reference materials and instrumental analytical-chemical methods contribute to safety and functionality in hydrogen technologies. This article gives a brief overview of SensRef activities in the Competence Centre H2Safety@BAM on the issues: Analytical methods for the determination of hydrogen purity, certified reference materials as measurement standards with regard to gas quality (primary calibrators) of BAM, test methods for gas sensor systems to detect hydrogen in air as well as the application of fibre-optic sensor systems to monitor the expansion and ageing behaviour of composite containers in hydrogen technologies. T2 - Berlin Brandenburger Optik-Tag "Einsatz von Sensorik und Mikroelektronik in der Wasserstoffwirtschaft" CY - Online meeting DA - 29.11.2021 KW - H2Safety@BAM KW - SensRef KW - Gas analysis KW - Gas purity KW - Fibre-optic sensors KW - Sensor response KW - Certified reference materials PY - 2021 AN - OPUS4-54138 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael A1 - Völker, J. T1 - Wir dürfen uns nicht zu sicher werden N2 - Die Erwartungen der Prozessindustrie an die NAMUR Open Architecture sind groß, schließlich soll das Konzept der Garant für die digitale Transformation der Branche sein. Im atp-Interview warnt Dr. Michael Maiwald, Fachbereichsleiter „Prozessanalytik“ an der Bundesanstalt für Materialforschung und -prüfung (BAM), allerdings davor, NOA als Allheilmittel zu betrachten. KW - Prozessindustrie KW - NAMUR Open Architecture KW - NOA KW - Industrie 4.0 KW - Digitale Transformation PY - 2019 UR - https://www.atpinfo.de/produkte/2019-atp-magazin-10-2019/ SN - 2190-4111 IS - 10 SP - 40 EP - 43 PB - Vulkan-Verlag GmbH CY - Essen AN - OPUS4-49501 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Grümbel, F. T1 - Aktuelle Aktivitäten und Anwendungsbeispiele zur Nutzung Smarter Sensoren N2 - Eine der vielen Vorzüge Smarter Sensoren und Aktoren ist Bereitstellung zusätzlicher Informationen, auf die zukünftig neben den Hauptsignalen zugegriffen werden kann. In den Arbeitskreisen 3.6 und 3.7 wird dieses im wechselseitigen Austausch mit Geräte- und Softwareherstellern und Forschungseinrichtungen vorangetrieben. Wir berichten kurz über den Stand der Diskussionen anhand von Beispielen und möchten in einem Open Space Workshop Meinungen und Ideen aufgreifen. T2 - NAMUR Hauptsitzung 2019 CY - Bad Neuenahr, Germany DA - 07.11.2019 KW - Prozessindustrie KW - Prozesskontrolle KW - Prozessanalytik KW - Smarte Sensoren KW - Industrie 4.0 KW - Digitalisierung PY - 2019 AN - OPUS4-49550 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Global PAT Meeting Bayer AG CY - Berlin, Germany DA - 12.11.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - CONSENS PY - 2019 AN - OPUS4-49602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Online NMR spectroscopy for process analytical applications and aspects on automation and digitization of process industry N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts while being based on “chemical” information. As an example, a fully automated NMR sensor is introduced, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. Therefore, a commercially available benchtop NMR spectrometer was adapted to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. A full integration and intelligent interconnection of such systems and processes progresses only hesitantly. The talk should encourage to re-think digitization of process industry based on smart sensors, actuators, and communication more comprehensively and informs about current technical perspectives such as the “one-network paradigm”, edge computing, or virtual machines. These give smart sensors, actuators, and communication a new perspective. T2 - Advances in Process Analytics and Control Technology 2019 Conference (APACT) CY - Chester, United Kingdom DA - 30.04.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Process Industry KW - Distributed Networks KW - Digital Twin PY - 2019 AN - OPUS4-47907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR spectroscopy: A versatile tool for automated continuous-flow production of chemicals and pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - GDCh-Seminar der Universität Bielefeld CY - Bielefeld, Germany DA - 17.01.2019 KW - Process analytical technology KW - Process industry KW - Online NMR spectroscopy KW - Indirect hard modeling KW - CONSENS KW - Fresenius lecture PY - 2019 AN - OPUS4-47221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Seminar of Research Department „Life, Light & Matter“ of the InterdisciplinaryFaculty of the University of Rostock CY - Rostock, Germany DA - 08.01.2019 KW - Process Analytical Technology KW - Low-field NMR Spectroscopy KW - Online NMR Spectroscopy KW - Modular Production KW - Process Industry KW - Fresenius Lecture PY - 2019 AN - OPUS4-47166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jacobasch, Stefan A1 - Duffner, Eric A1 - Goedecke, Thomas A1 - Portella, Pedro Dolabella A1 - Mair, Georg W. A1 - Schendler, Thomas A1 - Gradt, Thomas A1 - Askar, Enis A1 - Bartholmai, Matthias A1 - Schröder, Volkmar A1 - Maiwald, Michael A1 - Holtappels, Kai A1 - Tschirschwitz, Rico A1 - Neumann, Patrick P. T1 - Unser Beitrag zum Thema Wasserstoff N2 - Die BAM ist nahezu über die gesamte Wertschöpfungskette hinweg wissenschaftlich tätig. Von der sicheren und effizienten Wasserstofferzeugung (POWER-to-GAS), über die (Zwischen-)Speicherung von Wasserstoff in Druckgasspeichern bis hin zum Transport bspw. mittels Trailerfahrzeug zum Endverbraucher. Komplettiert werden die Aktivitäten der BAM durch die sicherheitstechnische Beurteilung von wasserstoffhaltigen Gasgemischen, die Verträglichkeitsbewertung von Werkstoffen bis hin zur Detektion von Wasserstoffkonzentrationen über geeignete Sensorik, auch mittels ferngesteuerter Messdrohnen (sog. UAV-Drohnen). Zudem untersucht die BAM proaktiv Schadensrisiken und Unfallszenarien für die Sicherheitsbetrachtung, um mögliche Schwachstellen aufzeigen und potenzielle Gefährdungen erkennen zu können. KW - Wasserstoff KW - Wasserstofferzeugung KW - Energiespeicherung KW - Gasdetektion KW - Risikoanalyse KW - Power-to-Gas KW - Explosionsschutz KW - Tribologie KW - Druckgasspeicher KW - Glasspeicher KW - Gassensorik KW - Mini-UAV PY - 2019 SP - 1 CY - Berlin AN - OPUS4-47960 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -