TY - JOUR A1 - Fricke, F. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, Stefan A1 - Hierzegger, R. A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy Using a Novel Data Augmentation Method N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are valuable analytical and quality control methods for most industrial chemical processes as they provide information on the concentrations of individual compounds and by-products. These processes are traditionally carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been realized to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra, to train an ANN with better prediction performance and speed than state-of-the-art analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy KW - Modular Production PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539412 UR - https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9638378 DO - https://doi.org/10.1109/TETC.2021.3131371 SN - 2168-6750 VL - 10 IS - 1 SP - 87 EP - 98 PB - IEEE AN - OPUS4-53941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Calibration-Free Chemical Process and Quality Control Units as Enablers for Modular Production N2 - Modular chemical production is a tangible translation of the digital transformation of the process industry for specialty chemicals. In particular, it enables the speeding-up of process development and thus a quicker time to market by flexibly connecting and orchestrating standardised physical modules and bringing them to life (i.e., parameterising them) with digitally accumulated process knowledge. We focus on the specific challenges of chemical process and quality control, which in its current form is not well suited for modular production and provide possible approaches and examples of the change towards direct analytical methods, analytical model transfer or machine-supported processes. KW - Modular Production KW - Chemical Process Control KW - Process Analytical Technology KW - Digital Transformation KW - Industry 4.0 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517264 DO - https://doi.org/10.1002/cite.202000150 SN - 1522-2640 VL - 93 IS - 1-2 SP - 62 EP - 70 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottu Mukkula, A. R. A1 - Kern, Simon A1 - Salge, M. A1 - Holtkamp, M. A1 - Guhl, Svetlana A1 - Fleischer, C. A1 - Meyer, Klas A1 - Remelhe, M. A1 - Maiwald, Michael A1 - Engell, S. T1 - An Application of Modifier Adaptation with Quadratic Approximation on a Pilot Scale Plant in Industrial Environment N2 - The goal of this work is to identify the optimal operating input for a lithiation reaction that is performed in a highly innovative pilot scale continuous flow chemical plant in an industrial environment, taking into account the process and safety constraints. The main challenge is to identify the optimum operation in the absence of information about the reaction mechanism and the reaction kinetics. We employ an iterative real-time optimization scheme called modifier adaptation with quadratic approximation (MAWQA) to identify the plant optimum in the presence of plant-model mismatch and measurement noise. A novel NMR PAT-sensor is used to measure the concentration of the reactants and of the product at the reactor outlet. The experiment results demonstrate the capabilities of the iterative optimization using the MAWQA algorithm in driving a complex real plant to an economically optimal operating point in the presence of plant-model mismatch and of process and measurement uncertainties. KW - Process Analytical Technology KW - Online NMR Spectroscopy KW - Process Industry KW - Iterative real-time optimization KW - Modifier adaptation KW - Plant-model mismatch KW - Reactor control KW - CONSENS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524531 DO - https://doi.org/10.1016/j.ifacol.2020.12.685 SN - 1522-2640 VL - 53 IS - 2 SP - 11773 EP - 11779 PB - Elsevier CY - Amsterdam AN - OPUS4-52453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Francesco A1 - Fiorucci, Letizia A1 - Vignoli, Alessia A1 - Meyer, Klas A1 - Maiwald, Michael A1 - Ravera, Enrico T1 - pyIHM: Indirect Hard Modeling, in Python N2 - NMR is a powerful analytical technique that combines an exquisite qualitative power, related to the unicity of the spectra of each molecule in a mixture, with an intrinsic quantitativeness, related to the fact that the integral of each peak only depends on the number of nuclei (i.e., the amount of substance times the number of equivalent nuclei in the signal), regardless of the molecule. Signal integration is the most common approach in quantitative NMR but has several drawbacks (vide infra). An alternative is to use hard modeling of the peaks. In this paper, we present pyIHM, a Python package for the quantification of the components of NMR spectra through indirect hard modeling, and we discuss some numerical details of the implementation that make this approach robust and reliable. KW - Algorithms KW - Chemical Structure KW - Deconvolution KW - Mixtures KW - NMR spectroscopy PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626793 DO - https://doi.org/10.1021/acs.analchem.4c06484 SN - 1520-6882 VL - 97 IS - 8 SP - 4598 EP - 4605 PB - ACS Publications CY - Washington D.C. AN - OPUS4-62679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Messverfahren für Wasserstoff: Qualität durch Zertifizierung – Standortvorteile in Deutschland N2 - Die Veranstaltungsreihe "Neue Märkte erschließen – mit Normen und Standards hoch hinaus", die vom DIN gemeinsam mit der NOW GmbH organisiert wird, richtets sich vorwiegend an KMUs. Fokus der Veranstaltung sind Messverfahren für Wasserstoff. Der Beitrag der BAM führt sehr kurz die Rolle nationaler und internationaler Normung sowie weltweiter Metrologie im Rahmen der Meterkonvention bezüglich analytischer Qualitätssicherung und Zertifizierung von Gasen und Referenzmaterialien ein. Es werden aktuelle Beispiele für die Qualitätssicherung von Wasserstoff, mögliche dazu notwendige Ausrüstung und weiterführende Literaturquellen vorgestellt. T2 - Neue Märkte erschließen – mit Normen und Standards hoch hinaus CY - Online meeting DA - 18.03.2021 KW - Wasserstoff KW - Normung KW - Standortvorteil KW - Analytik KW - Wasserstoffanalytik KW - Wasserstoff Referenzmaterial KW - Gasanalytik PY - 2021 AN - OPUS4-52296 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eifert, T. A1 - Eisen, K. A1 - Maiwald, Michael A1 - Herwig, C. T1 - Current and future requirements to industrial analytical infrastructure—part 2: smart sensors N2 - Complex processes meet and need Industry 4.0 capabilities. Shorter product cycles, flexible production needs, and direct assessment of product quality attributes and raw material attributes call for an increased need of new process analytical technologies (PAT) concepts. While individual PAT tools may be available since decades, we need holistic concepts to fulfill above industrial needs. In this series of two contributions, we want to present a combined view on the future of PAT (process analytical technology), which is projected in smart labs (Part 1) and smart sensors (Part 2). Part 2 of this feature article series describes the future functionality as well as the ingredients of a smart sensor aiming to eventually fuel full PAT functionality. The smart sensor consists of (i) chemical and process information in the physical twin by smart field devices, by measuring multiple components, and is fully connected in the IIoT 4.0 environment. In addition, (ii) it includes process intelligence in the digital twin, as to being able to generate knowledge from multi-sensor and multi-dimensional data. The cyber-physical system (CPS) combines both elements mentioned above and allows the smart sensor to be self-calibrating and self-optimizing. It maintains its operation autonomously. Furthermore, it allows—as central PAT enabler—a flexible but also target-oriented predictive control strategy and efficient process development and can compensate variations of the process and raw material attributes. Future cyber-physical production systems—like smart sensors—consist of the fusion of two main pillars, the physical and the digital twins. We discuss the individual elements of both pillars, such as connectivity, and chemical analytics on the one hand as well as hybrid models and knowledge workflows on the other. Finally, we discuss its integration needs in a CPS in order to allow is versatile deployment in efficient process development and advanced optimum predictive process control. KW - Smart sensors KW - Industry 4.0 KW - Digital twins KW - Process intelligence KW - Process analytical technology KW - Physical twin KW - Cyber-physical system PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503980 DO - https://doi.org/10.1007/s00216-020-02421-1 SN - 1618-2642 VL - 412 IS - 9 SP - 2037 EP - 2045 PB - Springer CY - Berlin Heidelberg AN - OPUS4-50398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisen, K A1 - Eifert, T A1 - Herwig, C A1 - Maiwald, Michael T1 - Current and future requirements to industrial analytical infrastructure—part 1: process analytical laboratories N2 - The competitiveness of the chemical and pharmaceutical industry is based on ensuring the required product quality while making optimum use of plants, raw materials, and energy. In this context, effective process control using reliable chemical process analytics secures global competitiveness. The setup of those control strategies often originate in process development but need to be transferable along the whole product life cycle. In this series of two contributions, we want to present a combined view on the future of PAT (process analytical technology), which is projected in smart labs (part 1) and smart sensors (part 2). In laboratories and pilot plants, offline chemical analytical methods are frequently used, where inline methods are also used in production. Here, a transferability from process development to the process in operation would be desirable. This can be obtained by establishing PAT methods for production already during process development or scale-up. However, the current PAT (Bakeev 2005, Org Process Res 19:3–62; Simon et al. 2015, Org Process Res Dev 19:3–62) must become more flexible and smarter. This can be achieved by introducing digitalization-based knowledge management, so that knowledge from product development enables and accelerates the integration of PAT. Conversely, knowledge from the production process will also contribute to product and process development. This contribution describes the future role of the laboratory and develops requirements therefrom. In part 2, we examine the future functionality as well as the ingredients of a smart sensor aiming to eventually fuel full PAT functionality—also within process development or scale-up facilities (Eifert et al. 2020, Anal Bioanal Chem). KW - Smart test laboratories KW - Laboratory 4.0 KW - Sustainable Production KW - Industry 4.0 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504020 DO - https://doi.org/10.1007/s00216-020-02420-2 SN - 1618-2642 VL - 412 IS - 9 SP - 2027 EP - 2035 PB - Springer CY - Berlin Heidelberg AN - OPUS4-50402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Integrated and Networked Systems and Processes—A Perspective for Digital Transformation in Thermal Process Engineering N2 - Separation technology as a sub-discipline of thermal process engineering is one of the most critical steps in the production of chemicals, essential for the quality of intermediate and end products. The discipline comprises the construction of facilities that convert raw materials into value-added products along the value chain. Conversions typically take place in repeated reaction and separation steps—either in batch or continuous processes. The end products are the result of several production and separation steps that are not only sequentially linked, but also include the treatment of unused raw materials, by-products and wastes. Production processes in the process industry are particularly susceptible to fluctuations in raw materials and other influences affecting product quality. This is a challenge, despite increasing fluctuations, to deliver targeted quality and simultaneously meet the increasing dynamics of the market, at least for high value fine chemicals. In order to survive successfully in a changed environment, chemical companies must tread new paths. This includes the potential of digital technologies. The full integration and intelligent networking of systems and processes is progressing hesitantly. This contribution aims to encourage a more holistic approach to the digitalization in thermal process engineering by introduction of integrated and networked systems and processes. KW - Smarter Sensor KW - Digitalisation KW - Digital transformation KW - Process Industry KW - Thermal Process Engineering KW - Digital Twins PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504964 DO - https://doi.org/10.3390/chemengineering4010015 SN - 2305-7084 VL - 4 IS - 15 SP - 1 EP - 9 PB - MDPI CY - Basel AN - OPUS4-50496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - van der Veen, A. M H A1 - Zalewska, E. T. A1 - Kipphardt, Heinrich A1 - Beelen, R. R. A1 - Tuma, Dirk A1 - Maiwald, Michael A1 - Fükő, J. A1 - Büki, T. A1 - Szilágyi, Z. N. A1 - Beránek, J. A1 - Cieciora, D. A1 - Ochman, G. A1 - e.t al., T1 - Metrologia International Bureau of Weights and Measures (BIPM), find out more - KEY COMPARISON International comparison CCQM-K118 natural gas N2 - CCQM-K118 was an international key comparison on natural gas composition with two types of gases, i.e., a low calorific hydrogen-enriched natural gas and a high calorific LNG type of gas. There were 14 participating laboratories. The traveling standards (i.e., 14 mixtures each) were obtained from an external source and checked for homogeneity and stability before and after the participants' measurements at the two coordinating laboratories. The data evaluation was performed using a consensus value and a laboratory effect model. The results of the participants were benchmarked against a key comparison reference value computed from the largest consistent subset (LCS) of the submitted results, adjusted for the differences between the travelling standards. For the first time in a key comparison in gas analysis, the model included a term to account for excess variability in the LCS. Most of the participants reported one or a few (slightly) discrepant results. Partly this is due to the heterogeneity and heteroscedasticity of the datasets. In all, the results in this key comparison demonstrate the good comparability of the national measurement standards for natural gas composition maintained by the participating NMIs. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA). To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - CCQM-K PY - 2022 DO - https://doi.org/10.1088/0026-1394/59/1A/08017 SN - 0026-1394 VL - 59 IS - 1A PB - IOP Publishing LTD AN - OPUS4-56308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Integrated and Networked Systems and Processes – A Perspective for Digital Transformation in (Bio) Process Engineering N2 - The competitiveness of the process industry is based on ensuring the required product quality while making optimum use of equipment, raw materials and energy. Chemical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. The potential of digital technologies belongs to these. One way is knowledge-based production, taking into account all essential equipment, process and regulatory data of plants and laboratories. Today, the potential of this data is often not yet consistently used for a comprehensive understanding of production. Another approach uses flexible and modular chemical plants, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. Digital transformation is enabling completely new production concepts that are being used increasingly. Intensified continuous production plants also allow for difficult to produce compounds. This contribution aims to encourage a more holistic approach to the digitalization and use of machine-assisted methods in (bio) process engineering by introduction of integrated and networked systems and processes, which have the potential to speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - 6th BioProScale Symposium - industrial scale bioprocess intensification from process development to large-scale understanding CY - Online meeting DA - 29.03.2021 KW - Industry 4.0 KW - Biotechnology KW - Bio engineering KW - Process Analytical Technology KW - BioProScale KW - Artificial Neural Networks PY - 2021 UR - https://biotechnologie.ifgb.de/node/648 AN - OPUS4-52371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Maiwald, Michael ED - Tauschnitz, T. T1 - Erweiterung des NOA-Konzepts - M+O-Sensoren, NE 183 N2 - Der Sensorik kommt bei der Digitalisierung der Prozessindustrie eine Schlüsselrolle zu. Entsprechend ist sie ein zentraler Baustein der NAMUR Open Architecture Konzepts (NOA). M+O-Sensoren (Monitoring + Optimization) - stellen eine neue Geräteklasse für die zusätzliche Überwachung und Optimierung von Anlagen der Prozessindustrie dar. Diese deckt klassische und alternative Messprinzipien bis hin zur Nachbildung der menschlichen Sinne ab. Hier werden die Anforderungen an M+O-Sensoren als Bestandteile der NOA beschrieben. KW - Prozessanalytik KW - Prozessindustrie KW - Sensoren KW - M+O-Sensoren KW - NAMUR Open Architecture KW - NOA PY - 2021 SN - 978-3-8356-7451-6 SP - 39 EP - 45 PB - Vulkan-Verlag GmbH CY - Essen ET - 1 AN - OPUS4-52912 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Fully integrated and intelligently networked systems and processes - Perspective: Smart sensors, actuators and communication N2 - Companies in the chemical industry have to tread new paths in order to survive successfully in a changed environment. This includes, in particular, the potential of digital technologies. The full integration and intelligent networking of systems and processes is making slow progress. This talk is a tribute to the field level. It wants to encourage a more holistic approach to the digitalisation of the process industry based on smart sensors, actuators and communication and provides information on current technical perspectives, such as the "one-network paradigm", ad-hoc networking, edge computing, FPGAs, virtual machines or blockchain. These give smart sensors, actuators and communication a completely new perspective. T2 - 5th European Conference on Process Analytics and Control Technology - EuroPACT 2021 CY - Online meeting DA - 15.11.2021 KW - Process Analytical Technology KW - Smart Sensors KW - Digital transformation KW - Industry 4.0 KW - EuroPact KW - Distributed Networks PY - 2021 UR - https://dechema.de/europact2021.html AN - OPUS4-53754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Kessler, R. W. A1 - Kessler, W. A1 - Maiwald, Michael ED - Meyers, R. A. T1 - Inline and Online Process Analytical Technology with a Focus on Optical Spectroscopy N2 - Process analytical technology (PAT) is a cross-sectional technology and thus essential for future smart production. While in the past decades, the focus of process optimization strategies was on increasing efficiency, in the future, the focus will be on the sustainability of a production and its products. In addition, products will be increasingly personalized in order to match the property profile exactly to the intended use. PAT is able to provide context-sensitive information at the molecular level for process control. Spectroscopic sensors can determine inline and simultaneously both the chemical composition and its sub-microscopic morphology. The article will focus on the optical spectroscopy and therefore starts with a brief introduction on the basic concepts of molecular spectroscopy. In addition, the particularities of measuring liquids, surfaces, or particulate systems in PAT applications are described. This should enable the reader to select the appropriate method for the specific problem. Many examples from everyday industrial practice illustrate the applications. The areas covered are the manufacturing industry, process and pharmaceutical industry, food industry, as well as biotechnology and medical technology. Future will show that PAT is especially important for applications in the field of medicine (point of care) circular economy (recycling, water–wastewater, etc.). It is important to emphasize that sustainability in industrial production can only be successful with an inter- and transdisciplinary close exchange between the different disciplines. KW - Process Analytical Technology KW - Optical Spectroscopy KW - Encyclopedia of Analytical Chemistry KW - Sensors KW - Process Industry PY - 2022 SN - 978-0-47002-731-8 DO - https://doi.org/10.1002/9780470027318.a9791 SP - 1 EP - 31 PB - JohnWiley & Sons, Ltd. AN - OPUS4-56688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fricke, F. A1 - Mahmood, S. A1 - Hoffmann, J. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, S. A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are critical components of every industrial chemical process as they provide information on the concentrations of individual compounds and by-products. These processes are carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been developed to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra to train an ANN with better prediction performance and speed than state-of-theart analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a possible strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. T2 - 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) CY - Grenoble, France DA - 01.02.2021 KW - Industry 4.0, KW - Cyber-physical systems KW - Artificial neural networks KW - Mass spectrometry KW - Nuclear magnetic resonance spectroscopy PY - 2021 DO - https://doi.org/10.23919/DATE51398.2021.9473958 SP - 615 EP - 620 PB - IEEE AN - OPUS4-55360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Lubenau, U. T1 - Large-scale hydrogen storage in geological reservoirs: Current perspectives and requirements for metrology N2 - The course of the changeover of UGS from natural gas to hydrogen varies depending on the type of the underground gas storage (UGS). In caverns a changeover to high H2-contents can be achieved quickly, while pore storage tanks must be converted over long periods of time. The analytical requirements are correspondingly different. This information has been compiled through expert statement by underground storage operators. A significant number of new UGS is currently not expected. Public funds (project funding) are currently being raised for the conversion of caverns to hydrogen. In addition, investigations and evaluations of the material are currently being carried out at various storage facilities in order to determine the possibilities and costs of a conversion. H2 admixtures to natural gas, but also pure H2 caverns are considered. The bottleneck seems to be the availability of large volumes of hydrogen. The analytical requirements along with the different hydrogen qualities, which are currently discussed were compiled through expert discussions with underground storage operators and are at hand as early impact results. T2 - EEMUA Energy Transition Seminar CY - Rotterdam, Netherland DA - 23.06.2022 KW - Hydrogen Storage KW - Underground gas storage (UGS) KW - MefHySto KW - EMPIR PY - 2022 AN - OPUS4-55109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Integrierte und vernetzte Systeme und Prozesse – Eine Perspektive für das Messen in der Prozessindustrie N2 - Anhand von Beispielen wird in diesem Vortrag ein möglicher ganzheitlicherer Ansatz für die Digitalisierung und den Einsatz maschinengestützter Prozesse bei der Herstellung von Spezialchemikalien und Arzneimitteln durch die Einführung integrierter und vernetzter Systeme und Prozesse skizziert. Ein aktueller Ansatz und ein Beispiel in diesem Vortrag sind flexible und modulare chemische Produktionseinheiten, die Mehrzweckanlagen nutzen, um verschiedene hochwertige Produkte mit kurzen Stillstandszeiten zwischen den Kampagnen herzustellen und die Markteinführungszeit für neue Produkte zu verkürzen. Als zweites Beispiel wird kurz die Testplattform Wasserstofftankstelle vorgestellt, die als moderne Anlage der Prozessindustrie betrachtet werden kann, vergleichbar mit einer Anlage aus der chemischen oder pharmazeutischen Industrie. An ihr lassen sich alle derzeit entlang der Digitalen Transformation diskutierten Konzepte implementieren, um sie zu standardisieren und zu validieren. Dazu gehören Konzepte zur Konnektivität von Sensoren und Aktoren aus der Feldebene in höhere Ebenen der Automatisierung oder zur Einbringung zusätzlicher Sensoren oder Sensornetzwerke, die zunehmend flexibler gestaltet werden soll, die sichere und nachvollziehbare Parametrierung von Automatisierungskomponenten – vielleicht aus einem digitalen Abbild (Verwaltungsschale bzw. „Digitaler Zwilling“) heraus, Konzepte zur vorausschauenden Wartung („Predictive Maintenance“), Konzepte zu digitalen Entscheidungsprozessen, Zertifikaten und Signaturen oder der zunehmende Einsatz von komplexen Auswertungsalgorithmen und Applikationen in der Feldebene („Embedded Computing“) oder der „Kante“ zu Cloudbasierten Systemen der Informationstechnik („Edge-Computing“). Die beiden Beispiele sollen aktuelle Entwicklungsachsen des industriellen Messwesens im Rahmen der industriellen Automation aufzeigen, in denen Messwerte, deren Messunsicherheiten und Kontextinformationen eine wichtige Rolle einnehmen. T2 - 324. PTB-Seminar: Berechnung der Messunsicherheit – Empfehlungen für die Praxis CY - Berlin, Germany DA - 22.05.2023 KW - Messunsicherheit KW - Prozessindustrie KW - Datenerfassung KW - QI-Digital KW - Online-NMR-Spektroskopie PY - 2023 UR - https://www.ptb.de/cms/de/ptb/fachabteilungen/abt8/fb-84/ag-842/seminare/324-ptb-seminar-berechnung-der-messunsicherheit-empfehlungen-fuer-die-praxis.html AN - OPUS4-57533 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Modular process control with compact NMR spectroscopy – From field integration to automated data analysis N2 - Chemical and pharmaceutical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. A current approach uses flexible and modular chemical production units, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. NMR spectroscopy appeared as excellent online analytical tool and allowed a modular data analysis approach, which even served as reliable reference method for further Process Analytical Technology (PAT) applications. Using the available datasets, a second data analysis approach based on artificial neural networks (ANN) was evaluated. Therefore, amount of data was augmented to be sufficient for training. The results show comparable performance, while improving the calculation time tremendously. In future, such fully integrated and interconnecting “smart” systems and processes can increase the efficiency of the production of specialty chemicals and pharmaceuticals. T2 - GIDRM Day (Gruppo Italiano Discussione Risonanze Magnetiche) - Data analysis and NMR: from fundamental aspects to health and material applications CY - Online meeting DA - 14.10.2022 KW - Process Control KW - Online NMR Spectroscopy KW - Industry 4.0 KW - Process Analytical Technology KW - Data Analysis KW - Machine-Assisted Workflows PY - 2022 DO - https://doi.org/http://www.gidrm.org/index.php/activities/workshops/2022-workshops/gidrm-day-data-analysis-and-nmr-from-fundamental-aspects-to-health-and-material-applications AN - OPUS4-56002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Modular process control with compact NMR spectroscopy: From field integration to fully automated data analysis N2 - Chemical and pharmaceutical companies need to find new ways to survive successfully in a changing environment, while finding more flexible ways of product and process development to bring their products to market faster - especially high-value, high-end products such as fine chemicals or pharmaceuticals. This is complicated by changes in value chains along a potential circular economy. One current approach is flexible and modular chemical production units that use multi-purpose equipment to produce various high-value products with short downtimes between campaigns and can shorten time-to-market for new products. Online NMR spectroscopy will play an important role for plant automation and quality control, as the method brings very high linearity, matrix independence and thus works almost calibration-free. Moreover, these properties ideally enable automated and machine-aided data analysis for the above-mentioned applications. Using examples, this presentation will outline a possible more holistic approach to digitalization and the use of machine-based processes in the production of specialty chemicals and pharmaceuticals through the introduction of integrated and networked systems and processes. T2 - Benchtop NMR: From Academia to Industry CY - Online meeting DA - 28.09.2022 KW - Digital Transformatioin KW - Process Industry KW - Benchtop NMR Spectroscopy KW - Procee Analytical Technology KW - Modular Production KW - Specialty Chemicals KW - Industry 4.0 PY - 2022 UR - https://eventos.fct.unl.pt/benchtop_nmr_workshop2022/pages/welcome AN - OPUS4-55850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Sicherheit und Prozesskontrolle in der Wasserstoff-Wirtschaft: Anforderungen an Sensoren und Prozessanalytik N2 - Der Vortrag ist ein Impulsvortrag, der kurz in die Prozessketten der potentiellen Wasserstoffwirtschaft einführt. An vielen Stellen werden spezifische Sensoren benötigt, die die Prozess-Sicherheit und die Zuverlässigkeit von Qualitätsparametern gewährleisten. Es wird auch kurz auf die Forschungsföerderungslandschaft zu diesem Thema eingegangen. T2 - Sensorik für die Digitalisierung Chemische Produktionsanlagen – Wir bringen neue Projektideen auf dem Weg! CY - Frankfurt am Main, Germany DA - 13.06.2022 KW - Sensoren KW - Wasserstoff-Wirtschaft KW - Forschungslandschaft Wasserstoff KW - ProcessNet KW - Digitale Transformation PY - 2022 AN - OPUS4-55110 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, Z. A1 - Han, Q. A1 - Wang, D. A1 - Macé, T. A1 - Kipphardt, Heinrich A1 - Maiwald, Michael A1 - Tuma, Dirk A1 - Uehara, S. A1 - Akima, D. A1 - Shimosaka, T. A1 - Jung, J. A1 - Oh, S.-H. A1 - van der Veen, A. A1 - van Wijk, J.I.T. A1 - Ziel, P. R. A1 - Konopelko, L. A1 - Valkova, M. A1 - Mogale, D.M. A1 - Botha, A. A1 - Brewer, P. A1 - Murugan, A. A1 - Minnaro, M.D. A1 - Miller, M. A1 - Guenther, F. A1 - Kelly, M.E. T1 - CCQM K101 Final report international comparison CCQM-K101:Oxygen in nitrogen-a track B comparison and that the matrix contains argon N2 - This key comparison aims to assess the capabilities of the participants to determine the amount-of-substance fraction oxygen in nitrogen. The GAWG has classified this as a track B comparison, due to the unexpected 50 μmol/mol argon mole fraction content of the transfer standards, which effects the achievable performance of some measurement techniques such a GC-TCD. The separation of oxygen and argon is challenging, and not all systems in use are equally well designed for it. As this analytical challenge due to a substantial fraction of argon in the transfer standards became a reality, the Gas Analysis Working Group (GAWG) decided to qualify this key comparison as a regular key comparison and not as a core comparison, which may be used to support calibration and measurement capabilities (CMCs) for oxygen in nitrogen, or for oxygen in nitrogen mixtures containing argon only (see also the section on support to CMCs). KW - CCQM-K101 KW - Gas analysis PY - 2016 UR - http://iopscience.iop.org/article/10.1088/0026-1394/53/1A/08013 SN - 1681-7575 SN - 0026-1394 VL - 53 IS - Techn Suppl SP - 08013, 1 EP - 71 PB - IOP publishing AN - OPUS4-40013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalik-Onichimowska, Aleksandra A1 - Kern, Simon A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - ‘‘Click” analytics for ‘‘click” chemistry – A simple method for calibration–free evaluation of online NMR spectra N2 - Driven mostly by the search for chemical syntheses under biocompatible conditions, so called "click" chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques possessing short set-up times. Here, we report on a fast and reliable calibration-free online NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement of 1H spectra with a time interval of 20 s per spectrum, and a robust, fully automated algorithm to interpret the obtained data. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in a variety of non-deuterated solvents while its time-resolved behaviour was characterized with step tracer experiments. Overlapping signals in online spectra during thiol-ene coupling could be deconvoluted with a spectral model using indirect hard modeling and were subsequently converted to either molar ratios (using a calibrationfree approach) or absolute concentrations (using 1-point calibration). For various solvents the kinetic constant k for pseudo-first order reaction was estimated to be 3.9 h-1 at 25 °C. The obtained results were compared with direct integration of non-overlapping signals and showed good agreement with the implemented mass balance. KW - Online NMR Spectroscopy KW - Reaction Monitoring KW - Automated Data Evaluation KW - Thiol-ene click chemistry KW - Click Chemistry KW - Process Analytical Technology PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-393232 UR - http://www.sciencedirect.com/science/article/pii/S1090780717300575 DO - https://doi.org/10.1016/j.jmr.2017.02.018 VL - 277 SP - 154 EP - 161 PB - Elsevier Inc. CY - Oxford AN - OPUS4-39323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael ED - Herwig, Christoph T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently, research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algorithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16-inch polymer tubing working as a flow cell. Single scan 1H NMR spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in non-deuterated solvents while its time-resolved behaviour was characterised with step tracer experiments. Through the application of spectral modeling the signal area for each reactant can be deconvoluted in the online spectra and thus converted to the respective concentrations or molar ratios. The signals which were suitable for direct integration were used herein for comparison purposes of both methods. T2 - 11. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 12.03.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Process Control KW - Process Analytical Technology KW - CONSENS KW - Click Chemistry PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435531 SP - 33 EP - 35 PB - Gesellschaft Deutscher Chemiker (GDCh) CY - Frankfurt a. M. AN - OPUS4-43553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Klas A1 - Rademann, K. A1 - Panne, Ulrich A1 - Maiwald, Michael T1 - Quantitative NMR spectroscopy for gas analysis for production of primary reference gas mixtures N2 - Due to its direct correlation to the number of spins within a sample quantitative NMR spectroscopy (qNMR) is a promising method with absolute comparison abilities in complex systems in technical, as well as metrological applications. Most of the samples studied with qNMR are in liquid state in diluted solutions, while gas-phase applications represent a rarely applied case. Commercially available NMR equipment was used for purity assessment of liquid and liquefied hydrocarbons serving as raw materials for production of primary reference gas standards. Additionally, gas-phase studies were performed within an online NMR flow probe, as well as in a high-pressure NMR setup to check feasibility as verification method for the composition of gas mixtures. KW - Quantitative NMR spectroscopy KW - Gas-phase NMR spectroscopy KW - Primary reference gas mixtures PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S1090780716302518 DO - https://doi.org/10.1016/j.jmr.2016.11.016 SN - 1090-7807 SN - 1096-0856 VL - 275 SP - 1 EP - 10 AN - OPUS4-38803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, Rudibert A1 - Maiwald, Michael ED - Maiwald, Michael T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual cam-paigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The re-sulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via compara-bly straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algo-rithm to interpret the ob-tained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16 inch polymer tubing working as a flow cell. Single scan 1H spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. T2 - 12. Kolloquium des Arbeitskreises Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - “Click” chemistry KW - Online NMR KW - Online monitoring PY - 2016 SP - 72 EP - 74 AN - OPUS4-38385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Metrology for Advanced Hydrogen Storage Solutions (MefHySto) – Overviewand Tangible Results N2 - The European project MefHySto addresses the need of large-scale energy storage, which is required for a shift to renewable energy supply. The project is funded by the European Metrology Programme on Innovation and Research (EMPIR) and consists of 14 consortium partners from all over Europe (www.mefhysto.eu). It is demonstrated, how MefHySto is contributing to the EMN for Energy Gases aiming at prioritisation of the measurement gaps and challenges interacting with the EMN stakeholders. T2 - European Metrology Network Energy Gases “Measurement Solutions for Energy Gases” Workshop CY - Lisbon, Portugal DA - 21.03.2023 KW - MefHySto KW - EMPIR KW - Hydrogen Storage KW - Hydrogen Metrology KW - Hydrogen Purity KW - Geological Storage PY - 2023 AN - OPUS4-57193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Modular process control with compact NMR spectroscopy – From Field Integration to Automated Data Analysis N2 - Chemical and pharmaceutical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. A current approach uses flexible and modular chemical production units, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. NMR spectroscopy appeared as excellent online analytical tool and allowed a modular data analysis approach, which even served as reliable reference method for further Process Analytical Technology (PAT) applications. Using the available datasets, a second data analysis approach based on artificial neural networks (ANN) was evaluated. Therefore, amount of data was augmented to be sufficient for training. The results show comparable performance, while improving the calculation time tremendously. In future, such fully integrated and interconnecting “smart” systems and processes can increase the efficiency of the production of specialty chemicals and pharmaceuticals. At the end of the article, ideas for solutions are discussed in order to speed up the implementation of new special products from the point of view of process analytics and to network the existing process chains more closely. T2 - PATriCK 2022 – Merck conference on PAT technology CY - Darmstadt, Germany DA - 19.10.2022 KW - Process Analytical Technology KW - Digitalisation KW - Process Industry KW - Online NMR Spectroscopy KW - Modular Production PY - 2022 AN - OPUS4-56089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Integrierte und vernetzte Systeme und Prozesse – Eine Perspektive für die smarte Laborinfrastruktur N2 - Chemie- und Pharmaunternehmen müssen neue Wege gehen, um in einem sich wandelnden Umfeld erfolgreich zu überleben, und gleichzeitig flexiblere Wege der Produkt- und Prozessentwicklung finden, um ihre Produkte schneller auf den Markt zu bringen - vor allem hochwertige High-End-Produkte wie Feinchemikalien oder Arzneimittel. Dazu gehört auch das Potenzial der digitalen Technologien, um ein umfassenderes Wissensmanagement zu ermöglichen. Eine wichtige Wissensquelle sind analytische Labors, die Unternehmensweit aktiv sind – von F&E bis zur Produktion. Die ganzheitliche Einbindung von analytischen Labors und ein unternehmensweites Daten- und Wissensmanagement sind wichtige Bausteine zur Integration und Vernetzung aller Systeme und Prozesse. Das Potenzial von Daten aus der Produktion mit ihren Kontextinformationen wird heute oft noch nicht konsequent für ein umfassendes Verständnis der Produktion genutzt. Dieser Beitrag skizziert anhand von Beispielen einen möglichen ganzheitlicheren Ansatz zur Digitalisierung und zum Einsatz maschineller Verfahren in der Produktion von Spezialchemikalien und Pharmazeutika durch die Einführung integrierter und vernetzter Systeme und Prozesse. T2 - 6. Analytik-Tag des Institut für Energie- und Umwelttechnik e.V. (IUTA) CY - Duisburg, Germany DA - 10.11.2022 KW - Prozessindustrie KW - Online-NMR-Spektroskopie KW - Prozessanalytik KW - Digitalisierung KW - Datenauswertung KW - IUTA PY - 2022 AN - OPUS4-56226 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Integrierte und vernetzte Systeme und Prozesse – Prozessnahe Sensorik für die digital transformierte Prozessindustrie N2 - Unternehmen der Prozessindustrie müssen neue Wege finden, um in einem sich wandelnden Umfeld erfolgreich zu überleben, und gleichzeitig flexiblere Wege der Produkt- und Prozessentwicklung finden, um ihre Produkte schneller auf den Markt zu bringen – insbesondere hochwertige, hochwertige Produkte wie Feinchemikalien oder Arzneimittel. Dies wird zukünftig durch Veränderungen in den Wertschöpfungsketten entlang einer potenziellen Kreislaufwirtschaft erschwert. Anhand von Beispielen wird in diesem Vortrag ein möglicher ganzheitlicher Ansatz zur Digitalisierung und zum Einsatz maschineller Verfahren in der Produktion von Spezialchemikalien durch die Einführung integrierter und vernetzter Systeme und Prozesse skizziert. Es wird auch auf die aktuelle Technologie-Roadmap „Prozess-Sensoren 2027+“ eingegangen, die Ende 2021 erschienen ist. Im Zentrum dieser Roadmaps stehen Sensoren zur Erfassung von physikalischen und chemischen Messgrößen mittels spezifischer und unspezifischer Messverfahren, die zur Steuerung und dem besseren Verständnis von Prozessen dienen. Die Roadmap fasst die gemeinsame Technologie- und Marktsicht von Anwendern, Herstellern und Forschungs¬einrichtungen im Bereich Prozess-Sensorik in der verfahrenstechnischen Industrie zusammen. Digitalisierung und Nachhaltigkeit sind übergreifende Kernthemen der künftigen Entwicklung. T2 - 11. Fachtagung Prozessnahe Röntgenanalytik PRORA CY - Berlin, Germany DA - 24.11.2022 KW - Digital Transformatioin KW - Prozessindustrie KW - Sensorik KW - Prozessanalytik KW - Industrie 4.0 KW - PRORA PY - 2022 AN - OPUS4-56391 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Editorial: Es ist Arznei, nicht Gift, was ich dir reiche N2 - Der Artikel ist ein Editorial, der für die Herstellung eines grundlegenden Vertrauens in medizinische Produkte - insbesondere Impfstoffe - wirbt, um Skeptiker zu Unterstützern zu machen. Er wirbt nicht nur für die Impfstoffe, sondern auch für die Kultur der Pharmazie und Chemie und die Wissenschaft ganz allgemein und regt an, mehr erklärende Formate wie z. B. im Stil der Sendung mit der Maus für diese Dinge zu werben. Der Artikel geht auch auf den ungeheuren Reiz der seit gut zwanzig Jahren diskutierten risikobasierten Ansätze für pharmazeutische Entwicklung und Herstellung von Arzneimitteln auf Basis der Quality Guidelines ein. KW - Impfstoffe KW - Pharmazeutische Produktion KW - Qualitätssicherung KW - Wissenschaftskultur KW - Prozessanalytik KW - Quality by Design PY - 2021 SN - 2625-4212 SN - 2364-3137 VL - 63 IS - 3 SP - 1 PB - Vulkan Verlag CY - Essen AN - OPUS4-52264 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Maiwald, Michael A1 - Bassler, M. A1 - Deilmann, M. A1 - Ens, W. A1 - Frenzel, F. A1 - Gerlach, M. A1 - Großmann, J. A1 - Grümbel, F. A1 - Heisterkamp, M. A1 - Kaiser, U. A1 - Lambrecht, A. A1 - Ohlenkamp, R. A1 - Pötter, T. A1 - Pyka, P. A1 - Roos, E. A1 - Schmidt, A. A1 - Schünemann, U. A1 - Theuer, M. A1 - Tukle, A. A1 - Weber, N. T1 - Technologie-Roadmap „Prozess-Sensoren 2027+“ N2 - Die Technologie-Roadmap „Prozess-Sensoren 2027+“ ist eine Weiterentwicklung vorgängiger Technologie-Roadmaps. Im Zentrum dieser Roadmaps stehen Sensoren zur Erfassung von physikalischen und chemischen Messgrößen mittels spezifischer und unspezifischer Messverfahren, die zur Steuerung und dem besseren Verständnis von Prozessen dienen. Die Roadmap fasst die gemeinsame Technologie- und Marktsicht von Anwendern, Herstellern und Forschungseinrichtungen im Bereich Prozess-Sensorik in der verfahrenstechnischen Industrie zusammen. Sie beschreibt die wesentlichen Trends im Bereich Prozess-Sensorik und künftige Handlungsbedarfe für Hersteller, Anwender sowie für Einrichtungen der Forschung und Lehre. Für die aktuellen und zukünftigen Anforderungen an Prozess-Sensoren werden 19 Thesen formuliert. Die Thesen basieren auf den Thesen der vorangegangenen Roadmaps, wobei die aus heutiger Sicht erforderlichen Anpassungen, Ergänzungen und teilweise auch Streichungen vorgenommen wurden. Die Thesen sind in 5 Themencluster eingeordnet. Digitalisierung und Nachhaltigkeit sind übergreifende Kernthemen der künftigen Entwicklung. KW - Technologie-Roadmap Prozess-Sensoren KW - Prozessindustrie KW - Prozessanalytik KW - Sensorik KW - Digitalisierung KW - NAMUR PY - 2021 SP - 1 EP - 63 AN - OPUS4-53741 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Quantitative NMR Spectroscopy (qNMR) as an Indispensable Instrumental Analytical Method and its Metrological Application N2 - Introduction NMR spectroscopy is one of the most important analytical methods in organic chemistry. While most analyses are carried out qualitatively with the aim of substance identification and structure elucidation, quantitative NMR spectroscopy (qNMR) is increasingly gaining importance in research and industry. qNMR provides the most universally applicable form of direct purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. Methods One of the most attractive features of quantitative NMR spectroscopy is that the NMR peak areas can be used directly for concentration quantification without further calibration. Another advantage of NMR spectroscopy is that the method has a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method that is independent of the matrix. This enables automated robust data evaluation strategies that can be used for online applications of qNMR spectroscopy. Jancke et al. proposed NMR spectroscopy as a relative primary analytical method because it can be fully described by mathematical equations from which a complete uncertainty budget can be derived, allowing it to be used at the highest metrological level. Weber et al. discussed in detail important aspects of the procedure that enable the realisation of low measurement uncertainties in qNMR measurements. Since certification of CRM requires expanded mea¬sure¬ment uncertainties of less than 0.5 % (relative), the work of Weber et al. demonstrated for the first time that qNMR can fulfil this criterion. Results To date, further comparative studies have been carried out in metrology and industry, demonstrating the performance of quantitative NMR spectroscopy and further reducing measurement uncertainties. The development of validation concepts and the commercial availability of suitable certified reference materials facilitate the application, especially in the usually highly regulated industrial environment. Users can thus accelerate the development of analytical methods. The talk will cover a wide range of topics from current metrological activities to new challenges for qNMR spectroscopy and also deals with aspects such as validation and accreditation. Innovative aspects • qNMR provides the most universally applicable form of direct purity determination • Expanded measurement uncertainties lower than 0.15 % (relative) possible • Benchtop NMR instruments increasingly used for qNMR spectroscopy T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Quantitative NMR Spectroscopy KW - qNMR KW - Process Analytical Technology KW - NMR Validation KW - NMR Accreditation KW - Purity KW - ANAKON PY - 2023 AN - OPUS4-57304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Online NMR spectroscopy paves the way for short development times in industrial reaction and process monitoring N2 - Modular chemical production is a tangible implementation of the digital transformation of the specialty chemicals process industry. In particular, it enables acceleration of process development and thus faster time to market by flexibly interconnecting and orchestrating standardized physical modules and bringing them to life. For this purpose, specific (chemical) sensors of process analytics are needed, preferably without lengthy calibration or spectroscopic model development. An excellent example of a "direct" analytical method is online nuclear magnetic resonance (NMR) spectroscopy. NMR spectroscopy meets the requirements of a direct analytical method because of the direct correlation between the signal area in the spectrum ("counting" the nuclear spins) and the analyte amount of substance concentrations. It is also extremely linear over the concentration range. With the availability of compact benchtop NMR instruments, it is now possible to bring NMR spectroscopy directly into the field, in close proximity to specialized laboratory facilities, pilot plants, and even industrial-scale production facilities. The first systems are in TRL 8 (Qualified System with Proof of Functionality in the Field). The presentation will discuss the many building blocks of online nuclear magnetic resonance spectroscopy, from flow cells to automated data analysis. T2 - SFB 1527 HyPERiON “High Performance Compact Magnetic Resonance“ Online Seminar CY - Karlsruhe, Germany DA - 06.07.2023 KW - Online NMR Spectroscopy KW - Process Monitoring KW - Reaction Monitoring KW - Industry 4.0 KW - Automation KW - Modular Production PY - 2023 AN - OPUS4-57862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Sensors, Analytics and Certified Reference Materials safeguarding the quality infrastructure in the hydrogen economy N2 - The prerequisites for a successful energy transition and the economic use of hydrogen as a clean green energy carrier and for H2 readiness are a rapid market ramp-up and the establishment of the required value chains. Reliable quality and safety standards for innovative technologies are the prerequisite for ensuring supply security, for environmental compatibility and sustainable climate protection, for building trust in these technologies and thus enable product and process innovations. With the Competence Centre "H2Safety@BAM", BAM is creating the safety-related prere-quisites for the successful implementation of hydrogen technologies at national as well as European level. BAM uses decades of experience in dealing with hydrogen technologies to develop the necessary quality and safety standards. The presentation will draw a bow from the typical basic tasks of BAM in the field of competence "Sensors, analytics and certified reference materials", such as maintenance and dissemination of the national gas composition standards for calorific value determination as Designated Institute for Metrology in Chemistry within the framework of the Metre Convention, to the further development of measurement and sensor technology for these tasks. For the certification of reference materials, a mostly slow and time-consuming but solid reference analysis is common. With hydrogen and its special properties, completely new requirements are added. In addition, fast and simple online analysis is required for process control, for example to register quality changes, e.g., during load changes or refuelling processes. T2 - Indo-German International Conference on Metrology for the Deployment of Green Hydrogen and Renewable Fuels in India CY - Online meeting DA - 04.04.2022 KW - Quality Infrastructure KW - Gas Reference Material KW - Hydrogen KW - Energy Gases KW - Sensors KW - Hydrogen Storage Materials PY - 2022 UR - https://www.imeko-gh2fuels.ptb.de/ AN - OPUS4-54596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Integrated and networked systems and processes – A perspective for digital transformation of our chemical and pharmaceutical production N2 - Chemical and pharmaceutical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. The potential of digital technologies belongs to these. A current approach uses flexible and modular chemical production units, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. At the same time, we need to move towards knowledge-based production that takes into account all essential equipment, process and control data from plants and laboratories and makes valuable expertise available and transferable. The potential of data from production together with its contextual information is often not yet consistently used today for a comprehensive understanding of production. By giving examples this paper outlines a possible more holistic approach to digitalisation and the use of machine-based methods in the production of specialty chemicals and pharmaceuticals through the introduction of integrated and networked systems and processes. T2 - GDCh Science Forum 2021 - GDCh Wissenschaftsforum 2021 CY - Online meeting DA - 29.08.2021 KW - Process analytical technology KW - Online NMR spectroscopy KW - Process industry KW - Industry 4.0 KW - Digital transformation KW - Autonomous chemistry PY - 2021 AN - OPUS4-53171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Integrated and Networked Systems and Processes - How NMR Spectroscopy Can Transform our Chemical and Pharmaceutical Production N2 - Chemical and pharmaceutical companies need to find new ways to survive successfully in a changing environment, while finding more flexible ways of product and process development to bring their products to market faster - especially high-value, high-end products such as fine chemicals or pharmaceuticals. This is complicated by changes in value chains along a potential circular economy. One current approach is flexible and modular chemical production units that use multi-purpose equipment to produce various high-value products with short downtimes between campaigns and can shorten time-to-market for new products. Online NMR spectroscopy will play an important role for plant automation and quality control, as the method brings very high linearity, matrix independence and thus works almost calibration-free. Moreover, these properties ideally enable automated and machine-aided data analysis for the above-mentioned applications. Using examples, this presentation will outline a possible more holistic approach to digitalization and the use of machine-based processes in the production of specialty chemicals and pharmaceuticals through the introduction of integrated and networked systems and processes. T2 - 43rd FGMR Annual Discussion Meeting CY - Karlsruhe, Germany DA - 12.09.2022 KW - Digital Transformatioin KW - Process Industry KW - Pharmaceuticals KW - Specialty Chemicals KW - Automation KW - Online NMR Spectroscopy KW - Industry 4.0 PY - 2022 AN - OPUS4-55715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Next Generation Automation - Arbeitskreis 3.7: Smarte Sensorik, Aktorik und Kommunikation N2 - Der AK 3.7 ist ein "erweiterter" AK und je zur Hälfte mit NAMUR-Vertretern und Vertretern der Geräte- und Softwarehersteller besetzt. Er wurde ins Leben gerufen, um Begrifflichkeiten der digitalen Transformation aufzugreifen, wie etwa Smarte Sensorik, Sensordatenfusion, Schwarmsensorik oder Softsensorik. Eine erste Aufgabe bestand darin, einige exemplarische Anwendungsfälle der Nutzung smarter Eigenschaften von Feldgeräten sowie deren zukünftige Kommunikationsmöglichkeiten sowohl mit Bezug auf Bestandsanlagen als auch mit Blick auf einen potentiellen Technologiewechsel zu betrachten. Neuer Scope des AK 3.7 ist eine "Next Generation Automation" um einen potentiellen Technologiewechsel rechtzeitig vorauszudenken. Dieses erfolgt unter vollständiger gedanklicher Trennung von heutiger Automatisierung und auch vom NOA-Konzept. Ebenso wird ein Technologiewechsel in der Produktion der Prozessindustrie (wahrscheinlich modulbasiert) postuliert. Ziel des AK 3.7 wird es in Zukunft sein, diese Anforderungen an smarte Feldgeräte aufzugreifen und gemeinsam mit den thematisch überlappenden Interessenskreisen in Standards zu übersetzen. KW - Prozessindustrie KW - Automation KW - NAMUR KW - Sensorik KW - Aktorik KW - Kommunikation PY - 2021 SN - 2190-4111 SN - 2364-3137 IS - 9 SP - 73 PB - Vulkan Verlag CY - Essen AN - OPUS4-54336 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Metrologie für fortschrittliche Wasserstoffspeicherlösungen – Das EU-Projekt MefHySto T1 - Metrology for advanced hydrogen storage solutions – The EU project MefHySto N2 - Das europäische Projekt MefHySto befasst sich mit dem Bedarf an großmaßstäblichen Energiespeichern, die für eine Umstellung der Energieversorgung auf erneuerbare Energien erforderlich sind. Eine solche Speicherung ist entscheidend, um Energie zu Spitzenzeiten zu liefern, wenn die erneuerbaren Energiequellen schwanken. Eine mögliche Lösung für die Energiespeicherung ist der großtechnische Einsatz von Wasserstoff. Die messtechnische Rückführbarkeit in der Energieinfrastruktur für die Wasserstoffspeicherung ist dann von entscheidender Bedeutung und eine bessere Kenntnis der chemischen und physikalischen Eigenschaften von Wasserstoff sowie rückführbare Messungen und validierte Techniken unverzichtbar. N2 - The European project MefHySto addresses the need of large-scale energy storage, which is required for a shift to renewable energy supply. Such storage is mandatory to supply energy at peak times when renewable sources fluctuate. A possible solution for energy storage is large-scale use of hydrogen. Metrological traceability in the energy infrastructure for hydrogen storage is then crucial and a better knowledge of the chemical and physical properties of hydrogen as well as traceable measurements and validated techniques are indispensable. KW - Wasserstoff KW - Wasserstoffspeicher KW - Infrastruktur KW - Metrologie KW - PEM-Wasserelektrolyse KW - Rückverstromung KW - Lastwechsel KW - Wasserstoff-Qualität PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556451 UR - https://gwf-gas.de/forschung-entwicklung/metrologie-fuer-fortschrittliche-wasserstoffspeicherloesungen-das-eu-projekt-mefhysto/ SN - 2366-9594 VL - 163 IS - 9 SP - 38 EP - 45 PB - Vulkan Verlag CY - Essen AN - OPUS4-55645 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Meyer, Klas A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions towards variable temperature shielding for compact NMR instruments N2 - The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature. KW - Benchtop NMR KW - Continuous Processes KW - Inline Analytics KW - Model Predictive Control KW - Process Analytical Tecnology KW - Temperature Control PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579219 DO - https://doi.org/10.1002/mrc.5379 SN - 1097-458X SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-57921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Liehr, Sascha A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Müller, S. A1 - Maiwald, Michael A1 - Kowarik, Stefan T1 - Artificial neural networks for quantitative online NMR spectroscopy N2 - Industry 4.0 is all about interconnectivity, sensor-enhanced process control, and data-driven systems. Process analytical technology (PAT) such as online nuclear magnetic resonance (NMR) spectroscopy is gaining in importance, as it increasingly contributes to automation and digitalization in production. In many cases up to now, however, a classical evaluation of process data and their transformation into knowledge is not possible or not economical due to the insufficiently large datasets available. When developing an automated method applicable in process control, sometimes only the basic data of a limited number of batch tests from typical product and process development campaigns are available. However, these datasets are not large enough for training machine-supported procedures. In this work, to overcome this limitation, a new procedure was developed, which allows physically motivated multiplication of the available reference data in order to obtain a sufficiently large dataset for training machine learning algorithms. The underlying example chemical synthesis was measured and analyzed with both application-relevant low-field NMR and high-field NMR spectroscopy as reference method. Artificial neural networks (ANNs) have the potential to infer valuable process information already from relatively limited input data. However, in order to predict the concentration at complex conditions (many reactants and wide concentration ranges), larger ANNs and, therefore, a larger Training dataset are required. We demonstrate that a moderately complex problem with four reactants can be addressed using ANNs in combination with the presented PAT method (low-field NMR) and with the proposed approach to generate meaningful training data. KW - Online NMR spectroscopy KW - Real-time process monitoring KW - Artificial neural networks KW - Automation KW - Process industry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507508 DO - https://doi.org/10.1007/s00216-020-02687-5 SN - 1618-2642 VL - 412 IS - 18 SP - 4447 EP - 4459 PB - Springer CY - Berlin AN - OPUS4-50750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kern, Simon A1 - Liehr, Sascha A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Müller, S. A1 - Maiwald, Michael A1 - Kowarik, Stefan T1 - Training data of quantitative online NMR spectroscopy for artificial neural networks N2 - Data set of low-field NMR spectra of continuous synthesis of nitro-4’-methyldiphenylamine (MNDPA). 1H spectra (43 MHz) were recorded as single scans. Two different approaches for the generation of artificial neural networks training data for the prediction of reactant concentrations were used: (i) Training data based on combinations of measured pure component spectra and (ii) Training data based on a spectral model. Synthetic low-field NMR spectra First 4 columns in MAT-files represent component areas of each reactant within the synthetic mixture spectrum. Xi (“pure component spectra dataset”) Xii (“spectral model dataset”) Experimental low-field NMR spectra from MNDPA-Synthesis This data set represents low-field NMR-spectra recorded during continuous synthesis of nitro-4’-methyldiphenylamine (MNDPA). Reference values from high-field NMR results are included. KW - NMR spectroscopy KW - Real-time process monitoring KW - Artificial neural networks KW - Online NMR spectroscopy KW - Automation KW - Process industry PY - 2020 DO - https://doi.org/10.5281/zenodo.3677139 PB - Zenodo CY - Geneva AN - OPUS4-50456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Bienert, M. A1 - Gugin, Nikita A1 - Emmerling, Franziska A1 - Maiwald, Michael T1 - A database to select affordable MOFs for volumetric hydrogen cryoadsorption considering the cost of their linkers N2 - Physical adsorption at cryogenic temperature (cryoadsorption) is a reversible mechanism that can reduce the pressure of conventional compressed gas storage systems. Metal–organic framework (MOF) materials are remarkable candidates due to the combination of high specific surface area and density which, in some cases, provide a high volumetric storage capacity. However, such extensive use of MOFs for this application requires the selection of affordable structures, easy to produce and made from feasible metallic and organic components. Herein, we introduce a MOF database detailing the crystallographic and porous properties of 3600 existing MOFs made from industrially relevant metals and their organic composition. The comparison of the available minimum costs of linkers allowed the creation of a database to select affordable structures with high potential for volumetric hydrogen storage by cryoadsorption, considering their composition based on individual or mixed building blocks. A user inter� face, available online, facilitates the selection of MOFs based on the properties or names of structures and linkers. KW - MOF´s PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583619 DO - https://doi.org/10.1039/d3ma00315a VL - 4 IS - 18 SP - 4226 EP - 4237 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Maiwald, Michael A1 - Villajos Collado, José Antonio T1 - Metal-organic framework compounds as hydrogen storage materials to enhance the safety, capacity, and efficiency of hydrogen refueling stations N2 - Gas adsorption is based on physical properties between gases and solid materials, enriching the surface with packed gas molecules with a higher density than in the bulk phase. For using this mechanism as a gas storage strategy, highly porous materials are necessary since large surfaces in small volumes can provide the storage system with a higher density than the gas phase. In the case of hydrogen gas, the interaction forces with solid surfaces are generally low at room temperature but can increase considerably at low operating temperatures. As a counterpart, the storage pressure is considerably lower than that necessary by traditional gas compression. Amongst ultra-porous adsorbent materials for hydrogen cryoadsorption, metal-organic frameworks (MOFs) are a group of remarkable solids made from metallic nodes linked by organic molecules exhibiting a wide variety of composition, geometry, porous properties, and chemical functionality. The scientific community focused in the last years on enhancing both the specific area of materials and the interaction energy to extend the storage properties of cryoadsorption to ambient-temperature and use it as hydrogen storage mechanisms in vehicles. However, the found difficulty in achieving ultra-porous structures with high-enough interaction energies decreased this research interest in the last years. However, for a stationary application like hydrogen refueling stations, where space and weight are not such limits as in vehicles, cryoadsorption can still be considered a feasible candidate for hydrogen storage. Cryoadsorption is the only fast and fully reversible approach to store hydrogen at similar density values as compressed gas. Cryogenic operation is a technological challenge, but first, liquid nitrogen is cheap, and second, it is less energy-demanding than hydrogen liquefaction, which is indeed considered as feasible for transportation and storage. Cryoadsorption involves lower pressure than compressed gas, increasing safety in the storage facilities, but additional research on the construction materials properties is necessary to better understand their behavior in contact with hydrogen at cryogenic temperatures. However, the knowledge of all these mechanisms is important to identify the improvement opportunities based on, probably, the interphase between different solutions. To achieve the set project goals, this internal research report describes the work packages realised within the framework of the project. KW - Metal-organic frameworks (MOFs) KW - Hydrogen Storage KW - Reversible Hydrogen Storage KW - Hydrogen Fuelling Stations KW - Croyo-starage KW - High-pressure volumetric analyzer (HPVA) PY - 2021 SP - 1 EP - 48 CY - Berlin AN - OPUS4-53582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Dautain, O. A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Optimizing the Green Synthesis of ZIF-8 by Reactive Extrusion Using In Situ Raman Spectroscopy N2 - We report the scale-up of a batch solid synthesis of zeolitic imidazolate framework-8 (ZIF-8) for reactive extrusion. The crystalline product forms in the extruder directly under the mixture of solid 2-methylimidazole and basic zinc carbonate in the presence of a catalytic amount of liquid. The process parameters such as temperature, liquid type, feeding rate, and linker excess were optimized using the setup specifically designed for in situ Raman spectroscopy. Highly crystalline ZIF-8 with a Brunauer–Emmett–Teller (BET) surface area of 1816 m2 g–1 was quantitatively prepared at mild temperature using a catalytic amount of ethanol and a small excess of the linker. Finally, we developed a simple and comprehensive approach to evaluating the environmental friendliness and scalability of metal–organic framework (MOF) syntheses in view of their large-scale production. KW - Mechanochemistry KW - In situ Raman KW - Large-scale processing KW - Metal−organic frameworks KW - Twin-screw extrusion (TSE) PY - 2023 DO - https://doi.org/10.1021/acssuschemeng.2c07509 SN - 2168-0485 VL - 11 IS - 13 SP - 5175 EP - 5183 PB - ACS Publications AN - OPUS4-57366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balderas-Xicohtencatl, R. A1 - Villajos Collado, José Antonio A1 - Casabán, J. A1 - Wong, D. A1 - Maiwald, Michael A1 - Hirscher, M. T1 - ZIF‑8 Pellets as a Robust Material for Hydrogen Cryo-Adsorption Tanks N2 - Cryoadsorption on the inner surface of porous materials is a promising solution for safe, fast, and reversible hydrogen storage. Within the class of highly porous metal−organic frameworks, zeolitic imidazolate frameworks (ZIFs) show high thermal, chemical, and mechanical stability. In this study, we selected ZIF-8 synthesized mechanochemically by twin-screw extrusion as powder and pellets. The hydrogen storage capacity at 77 K and up to 100 bar has been analyzed in two laboratories applying three different measurement setups showing a high reproducibility. Pelletizing ZIF-8 increases the packing density close to the corresponding value for a single crystal without loss of porosity, resulting in an improved volumetric hydrogen storage capacity close to the upper limit for a single crystal. The high volumetric uptake combined with a low and constant heat of adsorption provides ca. 31 g of usable hydrogen per liter of pellet assuming a temperature−pressure swing adsorption process between 77 K − 100 bar and 117 K − 5 bar. Cycling experiments do not indicate any degradation in storage capacity. The excellent stability during preparation, handling, and operation of ZIF-8 pellets demonstrates its potential as a robust adsorbent material for technical application in pilot- and full-scale adsorption vessel prototypes. KW - Hydrogen adsorption storage KW - Metal−organic frameworks KW - ZIF-8 KW - Cryoadsorption KW - Hydrogen Storage KW - MefHySto PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569473 DO - https://doi.org/10.1021/acsaem.2c03719 SN - 2574-0962 SP - 1 EP - 8 PB - ACS Publications CY - Washington DC AN - OPUS4-56947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Impulse zur Nutzung smarter Sensoren und Aktoren - Aktuelle Aktivitäten und Anwendungsbeispiele N2 - Eine der vielen Vorzüge smarter Sensoren und Aktoren ist die Bereitstellung zusätzlicher Informationen, auf die zukünftig neben bereits verwendeten Signalen zugegriffen werden kann. In verschiedenen Arbeitskreisen wird dieser Themenbereich im wechselseitigen Austausch mit Geräte- und Softwareherstellern und Forschungseinrichtungen vorangetrieben. In diesem Beitrag wird der aktuelle Stand der Diskussionen anhand von Beispielen erläutert. KW - Smarter Sensor KW - Smarter Aktor KW - Digitale Transformation KW - Prozessindustrie KW - NAMUR PY - 2020 DO - https://doi.org/10.17560/atp.v62i1-2.2468 SN - 2364-3137 VL - 62 IS - 1-2 SP - 72 EP - 79 PB - Vulkan-Verlag GmbH (Verlag) CY - Essen AN - OPUS4-50443 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. Recently, AI procedures have also been successfully used for NMR data evaluation. In order to overcome the typical limitation of too small data sets from process developments, a new method was tested, which allows a physically motivated multiplication of the available reference data together with context information in order to obtain a sufficiently large data set for the training of machine learning algorithms. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Compact NMR: Perspectives for (Bio)process Monitoring CY - Online meeting DA - 14.10.2020 KW - Process Industry KW - Real-time Process Monitoring KW - NMR Spectroscopy KW - Indirect Hard Modelling KW - Modular Production PY - 2020 AN - OPUS4-51430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Aktuelles zur Technologie-Roadmap "Prozess-Sensoren 4.0" N2 - Die auf der NAMUR Hauptsitzung 2015 vorgestellte Technologie-Roadmap „Prozess-Sensoren 4.0“ zeigt die damaligen Anforderungen an Prozess-Sensoren sowie an deren Kommunikations-fähigkeiten auf. Wir berichten über die Umsetzungen der damaligen Ideen/Thesen aus heutiger Sicht und blicken nach vorn. T2 - Workshop NAMUR-Hauptsitzung 2020 CY - Online meeting DA - 05.11.2020 KW - Prozessindustrie KW - Technologie-Roadmap "Prozess-Sensoren 4.0" KW - NAMUR KW - Automation KW - Prozessanalytik KW - Sensoren PY - 2020 AN - OPUS4-51523 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Interlaboratory comparison of benchtop NMR spectrometers – Purities at 200 and 10 mmol/L N2 - Due to its advantages of being a direct comparison method, quantitative NMR spectroscopy (qNMR) becomes more and more popular in industry. While conventional high-field NMR systems are often associated with high investment and operational costs, the upcoming market of permanent-magnet based benchtop NMR systems show a considerable option for a lot of applications. The mobility of these systems allows to bring them more closely to the real production environment, e.g. for at-line quality control. In this work we present an interlaboratory comparison study investigating the qNMR performance of state-of-the-art benchtop NMR spectrometers. Therefore, BAM prepared two samples of a mixture of NMR reference standards tetramethylbenzene (TMB) and tetrachloronitrobenzene (TCNB) at concentration levels of 200 mM and 10 mM. These “ready-to-use” samples were sent to participant laboratories, which performed analysis on their benchtop NMR equipment of different vendors and fields from 43 to 80 MHz. Raw data was reported back and further investigated by using different data analysis methods at BAM. After this very first qNMR comparison study of benchtop NMR spectrometers show promising results, following studies are planned to cover more parts of the qNMR process, e.g. sample preparation and weighing, but also data analysis, as commonly done in similar studies for high-field NMR spectroscopy in industry and metrology. T2 - The United States Pharmacopeial Convention (USP) Emerging Technologies Workshop & Roundtable CY - Online meeting DA - 17.11.2020 KW - Quantitative NMR Spectroscopy KW - QNMR KW - Purity KW - Interlaboratory Comparison KW - Low-field NMR Spectroscopy PY - 2020 UR - https://www.cvent.com/events/emerging-technologies-workshop-roundtable-quantitative-nmr-and-digital-data-applications-overview-an/event-summary-f128e4bfbedc48d6946f554ea719d6b1.aspx?dvce=1 AN - OPUS4-51526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Andrea A1 - Broszies, T. A1 - Ostermann, Markus A1 - Vogdt, F.U. A1 - Maiwald, Michael T1 - Unterscheidung von Mineralwollen mit Nahinfrarot-Spektroskopie (NIRS) T1 - Differentiation of mineral wool by near-infrared spectroscopy (NIRS) N2 - Für die Rückführung von aus Rückbauprojekten anfallender künstlicher Mineralwolle in ihren Herstellungsprozess ist es notwendig, Stein- und Glaswolle zu unterscheiden und voneinander getrennt zu halten. Zu diesem Zweck wurde das Potential von NIR-Spektroskopie (NIRS) für einen werks- oder baustellenseitigen Einsatz getestet. NIRS wird aufgrund kurzer Messzeiten, minimaler Probenvorbereitung und hoher Robustheit der Spektrometer häufig in der Prozessanalytik eingesetzt. Untersucht wurden 70 verschiedene Mineralwollen, wobei sich der Probenumfang sowohl aus werksneuen Proben mit Herstellerangaben als auch unbekannten Proben ohne Spezifikation zusammensetzen, die auf verschiedenen Baustellen in den Jahren 2016–2017 entnommen oder von Deponien zur Verfügung gestellt worden waren. Als Referenzmethode wurde die Röntgenfluoreszenzanalyse verwendet, um den Mineralwolle-Typ über den Elementgehalt nach VDI 3492 zu identifizieren. Mit Hilfe eines multivariaten Datenanalyseverfahrens konnte schließlich eine Methode etabliert werden, die eine zuverlässige Identifikation von unbekannten Mineralwollen anhand deren NIR-Spektren als Stein- bzw. Glaswolle ermöglicht. N2 - For the recirculation of artificial mineral wool resulting from deconstruction projects to the production process, it is necessary to distinguish between rock wool and glass wool. For this purpose, the potential of NIR spectroscopy (NIRS) was tested for the application directly on construction site or in factory. NIRS is often used in process analytics due to short measurement times, minimal sample preparation and high robustness of the spectrometers. In this study 70 mineral wool samples were examined, including both new samples with manufacturer`s specifications and unknown samples without specifications, which were taken at various German construction sites between 2016 and 2017 or which were provided by landfills. X-ray fluorescence spectroscopy was used as a reference method to identify the mineral wool type via the element content according to VDI 3492. With the help of a multivariate data analysis method finally a method was established, which allows a reliable identification of unknown mineral wool based on its NIR spectra as rock or glass wool. KW - Recycling KW - NIR KW - Baustoffe KW - Chemometrie PY - 2020 VL - 95 IS - 12 SP - 463 EP - 472 PB - VDI Fachmedien GmbH & Co. KG CY - Düsseldorf AN - OPUS4-51851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Künstliche Neuronale Netze für quantitative Online-Spektroskopie in der Prozessindustrie – Lästige Modellbildung ade? N2 - Bei Industry 4.0 dreht sich alles um Interkonnektivität, sensorgestützte Prozesssteuerung und datengesteuerte Systeme. Prozessanalysentechnik (PAT) wie die Online-Kernresonanzspektroskopie (NMR) gewinnt zunehmend an Bedeutung, da sie zur Automatisierung und Digitalisierung in der Produktion beiträgt. Eine klassische Auswertung von Prozessdaten und deren Umsetzung in Wissen ist jedoch bisher in vielen Fällen aufgrund der unzureichend großen verfügbaren Datensätze nicht möglich oder nicht wirtschaftlich. Bei der Entwicklung eines automatisierten Verfahrens für die Prozesskontrolle stehen manchmal nur die Basisdaten einer begrenzten Anzahl von Batch-Versuchen aus typischen Produkt- und Prozessentwicklungskampagnen zur Verfügung. Diese Datensätze sind jedoch nicht groß genug, um maschinengestützte Verfahren zu trainieren. Um diese Einschränkung zu überwinden, wurde ein neues Verfahren entwickelt, das eine physikalisch motivierte Multiplikation der verfügbaren Referenzdaten erlaubt, um einen ausreichend großen Datensatz für das Training von maschinellen Lernalgorithmen zu erhalten. Das zugrundeliegende Beispiel einer chemischen Synthese wurde spektroskopisch verfolgt und mit der neuen Methode sowie mit einem physikalisch basierten Modell analysiert, wobei sowohl eine anwendungsrelevante Niederfeld-NMR als auch eine Hochfeld-NMR-Spektroskopie als Referenzmethode verwendet wurde. Künstliche neuronale Netze (ANNs) haben das Potenzial, bereits aus relativ begrenzten Eingabedaten wertvolle Prozessinformationen abzuleiten. Um jedoch die Konzentration unter komplexen Bedingungen (viele Edukte und weite Konzentrationsbereiche) vorherzusagen, sind größere ANNs und damit ein größerer Trainingsdatensatz erforderlich. Wir zeigen, dass ein mäßig komplexes Problem mit vier Edukten unter Verwendung von ANNs in Kombination mit der vorgestellten PAT-Methode (Niederfeld-NMR-Spektroskopie) und mit dem vorgeschlagenen Ansatz zur Erzeugung aussagekräftiger Trainingsdaten bewältigt werden kann. T2 - 16. Kolloquium Arbeitskreis Prozessanalytik CY - Online meeting DA - 23.11.2020 KW - Prozessindustrie KW - Online-NMR-Spektroskopie KW - Industrie 4.0 KW - Künstliche Neuronale Netze KW - Prozessanalytik KW - Digitale Transformation PY - 2020 AN - OPUS4-51647 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -