TY - GEN A1 - Hampel, U. A1 - Schütze, A. A1 - Rädle, M. A1 - Rück, T. A1 - Krawczyk-Becker, M. A1 - Musch, T. A1 - Maiwald, Michael A1 - Fröhlich, H. J. A1 - Zeck, S. T1 - Positionspapier Sensorik für die Digitalisierung chemischer Produktionsanlagen N2 - Die chemische Industrie steht derzeit, wie viele andere Industriebereiche, vor den Herausforderungen einer Digitalisierung der Produktion. Sie ist der Schlüssel für die Flexibilisierung von Prozessen und Anlagen, für die Verkürzung von Produkteinführungszeiten sowie für den Zuschnitt der Produktion auf wechselnde Nachfrage und kürzere Produktlebenszyklen. Die Messtechnik und Sensorik spielt neben der intelligenten Datenverarbeitung eine Schlüsselrolle für die Digitalisierung. Flexiblere Anlagen benötigen Sensorik zur Überwachung des Anlagenzustandes, zur Früherkennung nicht bestimmungsgemäßer Betriebszustände sowie für eine bedarfsgerechte Wartung. Da die Entwicklung neuer und verbesserter Messtechnik und Sensorik grundlegend aus verschiedenen Richtungen gedacht werden muss, haben sich Akteure aus verschiedenen Branchen zusammengetan und dieses Positionspapier erstellt. Es basiert auf einer grundlegenden Analyse des Ist-Stands sowie des Bedarfs der Industrie, die unter anderem auf einem eigens dafür durchgeführten Workshop mit Sensorentwicklern, Anlagenherstellern sowie Anlagenbetreibern am 18. Juni 2019 bei der DECHEMA in Frankfurt a. M. diskutiert wurden. Diese Aktivitäten wurden maßgeblich von der Initiative Wanted Technologies der ProcessNet sowie dem AMA Verband für Sensorik und Messtechnik e.V. initiiert. KW - Prozessindustrie KW - Smarte Sensoren KW - Prozessanalytik KW - DECHEMA KW - Positionspapier PY - 2020 UR - https://dechema.de/Sensorik SP - 1 EP - 20 PB - DECHEMA CY - Frankfurt am Main AN - OPUS4-50403 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - OPC-UA für Prozessindustrie und Laborwelt - Offener Standard für die störungsfreie Kommuniktaion N2 - Im privaten Umfeld machen wir uns keine Gedanken mehr über die Einbindung von elektronischen Geräten in Netzwerke, sei es bei der Verbindung des Mobiltelephons mit dem W-Lan-Netzwerk des Hotels oder von Freunden oder des drahtlosen Kopfhörers mit dem Notebook: Wir erwarten, dass es auf Anhieb funktioniert. Dahinter stecken offene Standards für die Konnektivität. Dafür braucht man immer zwei Dinge: Einen physischen Kommunikationskanal, auf dem die Datenpakete zwischen den Komponenten und Geräten hin- und herwandern und eine einheitliche Kommunikationssprache, so dass sich die Komponenten und Geräte auch untereinander verstehen, weil sie dieselbe Sprache sprechen und automatisch wissen, was sie miteinander zu besprechen haben. Wenn man eine sichere Konnektivität bevorzugt, werden weitere Informationen benötigt, wie etwa ein Passwort. Auch für die störungsfreie Kommunikation aller Automatisierungskomponenten der Prozessindustrie untereinander oder etwa für die Kommunikation von Geräten in einem analytischen Labor wird ein einheitliches Protokoll (Kommunikationssprache) und ein einheitlicher Feldbus (Kommunikationskanal) benötigt. Mittlerweile gilt der Standard OPC Unified Architecture (OPC-UA) für das Erstere als gesetzt und kann als ein kleiner Triumph von Industrie 4.0 betrachtet werden. OPC-UA kann auf verschiedenen Kommunikationskanälen laufen – am liebsten solchen, die eine angemessene Bandbreite oder Datenrate haben. Was den dazu notwendigen physischen Kommunikationskanal betrifft, findet man aus verschiedenen Gründen einen sehr spezialisierten und historisch über Jahrzehnte gewachsenen Lebensraum vor, der Operational Technology (OT) genannt wird. Zumeist findet man Zwei- und Vierdraht-Techniken mit Strom- und Spannungs-Signalübertragung, zum Beispiel mit 4–20 mA. Kommunikationsstandards wie eingangs erwähnt, wie Ethernet oder W-Lan sind absolut die Seltenheit. Dieses wird für die sogenannte Informationstechnik (Information Technology, IT) eingesetzt und ist aus Sicherheitsgründen heute komplett von der OT getrennt. Auch wenn es der OT nicht gefällt, wachsen die beiden Welten IT und OT aber stetig weiter zusammen, da die IT bereits viele funktionierende und preislich attraktive Lösungen bereithält. Die vermeintliche Sicherheit, Verfügbarkeit und Echtzeitfähigkeit der klassischen OT, aber auch ihre Komplexität müssen im Zuge der Digitalen Transformation nun sorgfältig abgewogen werden. KW - Prozessindustrie KW - Laborkommunikation KW - Konnektivität KW - OPC-UA KW - Digital Transformation KW - Labor-IT PY - 2021 UR - https://analyticalscience.wiley.com/do/10.1002/was.00170277/full/blaetterkatalog_git1021.pdf SN - 0016-3538 VL - 65 IS - 10 SP - 1 EP - 4 PB - Wiley CY - Weinheim AN - OPUS4-53566 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. Recently, AI procedures have also been successfully used for NMR data evaluation. In order to overcome the typical limitation of too small data sets from process developments, a new method was tested, which allows a physically motivated multiplication of the available reference data together with context information in order to obtain a sufficiently large data set for the training of machine learning algorithms. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Compact NMR: Perspectives for (Bio)process Monitoring CY - Online meeting DA - 14.10.2020 KW - Process Industry KW - Real-time Process Monitoring KW - NMR Spectroscopy KW - Indirect Hard Modelling KW - Modular Production PY - 2020 AN - OPUS4-51430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Maiwald, Michael A1 - Gornushkin, Igor B. A1 - Ostermann, Markus ED - Gauglitz, G. ED - Moore, D.S. T1 - Trends in spectroscopic techniques for process control N2 - New developments in spectroscopic techniques for process control are, in general, driven by shortcomings of existing technology, for example, when sensitivity, selectivity, robustness, and so forth do not meet the demands. The perfect process analytical method would be based on a robust and easy to handle customized technique operating in real time, come without any need for calibration, that is, be an absolute method, have a professional support, and be compliant to increasing regulatory requirements. However, there are at least trends toward such an all-in-one device suitable for every purpose. Small, low-field NMR systems equipped with permanent magnet technology have been developed and allow for quantitative analysis as on-line instruments in a production environment. Quantitative high-resolution on-line NMR spectroscopy contributes to process understanding in pilot plant and research environments. Laser spectroscopy is a promising field in process analysis owing to its sensitivity and selectivity. Laser-induced breakdown spectroscopy LIBS is a promising field for direct in situ analysis and remote sensing. Applications of quantum-cascade lasers for process analytical applications are a promising technique. Techniques such as cavity ring-down spectroscopy (CRDS), tunable diode laser absorption spectroscopy (TDLAS), and photothermal techniques are briefly introduced. Recent developments of new detectors have improved X-ray fluorescence analysis (XRF) for qualitative and quantitative on-line evaluation of the elementary composition of liquid or solid samples, regardless of whether compact or bulk material. The chapter also introduces miscellaneous techniques such as ion mobility spectroscopy (IMS), microwave and dielectric spectroscopy, terahertz spectroscopy, ultrasonic acoustic spectroscopy, and other methods. KW - Process analytical technology (PAT) KW - NMR spectroscopy KW - IMS KW - CRDS KW - TDLAS KW - LIBS KW - Prozessanalytik KW - X-ray fluorescence KW - Terahertz spectroscopy PY - 2014 SN - 978-3-527-32150-6 DO - https://doi.org/10.1002/9783527654703.ch41 VL - 3 SP - Chapter 41, 1419 EP - 1438 PB - Wiley-VCH AN - OPUS4-31859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Teil der Revolution - Prozessanalysentechnik: Kernstück von "Industrie 4.0"? N2 - Ohne die vielfältigen Messmethoden der Prozess­analysentechnik (PAT) sind viele moderne Anlagen der verfahrenstechnischen Industrie heute nicht mehr wirtschaftlich oder sicher zu betreiben. Dementsprechend ­erfährt die sich mittlerweile immer mehr als selbstständig etablierende Branche Prozessanalysentechnik einen großen Zuwachs und ­eine ­spannende Dynamik. Sie ermög­licht eine Produktion in der geforderten Produktqualität unter optimaler Ausnutzung von Rohstoffen, Anlagen und Energie. KW - Prozessanalytik KW - Industrie 4.0 KW - Pharmazeutische Produktion KW - Process analytical technology PY - 2014 SN - 2191-3803 VL - 5 IS - 04 SP - 10 EP - 12 PB - Succidia AG, Verl. und Kommunikation CY - Darmstadt AN - OPUS4-31435 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Blazek, M. A1 - Deilmann, M. A1 - Gasch, A. A1 - Gerlach, M. A1 - Grümbel, F. A1 - Kaiser, U. A1 - Kloska, M. A1 - Löbbecke, S. A1 - Maiwald, Michael A1 - Pötter, T. A1 - Rebner, K. A1 - Roos, E. A1 - Stieler, S. A1 - Stolz, D. A1 - Theuer, M. A1 - Berthold, J. A1 - Engelhard, H. T1 - Technologie-Roadmap "Prozesssensoren 4.0" N2 - Mit den Technologie-Roadmaps „Prozesssensoren 2005–2015“ [1] (2006) und „Prozesssensoren 2015+“ [2] und [3] (2009) wurden Grundlagen für alle Unternehmen der Prozessindustrie geschaffen, um zielgerichtet auf Kundenbedürfnisse der Prozessindustrie zugeschnittene Produktentwicklungen, technologische Weiterentwicklungen und Forschungsprojekte zum Erfolg zu bringen. Die Roadmap „Prozesssensoren 2015+“ fand große Akzeptanz aufgrund der soliden Betrachtung der Prozesse und der daraus abgeleiteten Thesen. Diese Aussagen haben in vollem Umfang weiterhin Gültigkeit. Im Rückblick auf die damals formulierten Entwicklungsziele wurden viele dieser Ziele im prognostizierten Zeithorizont auf den Weg gebracht und teilweise bereits umgesetzt. In dieser Technologie-Roadmap werden einige Beispiele dazu aufgezeigt. KW - Roadmap KW - Industrie 4.0 KW - Prozess-Sensoren KW - Prozessanalytik KW - Sensoren PY - 2015 UR - http://www.namur.net/fileadmin/media_www/Roadmap_Dateien/Roadmap_Prozesssensoren_4.0.pdf SP - 1 EP - 36 AN - OPUS4-34947 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Die neue Technologie-Roadmap "Prozess-Sensoren 4.0" T2 - NAMUR-Hauptsitzung 2015 CY - Bad Neuenahr, Germany DA - 2015-11-05 PY - 2015 AN - OPUS4-35062 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Towards "Process Sensors 4.0" - How to turn the vision to a mission? T2 - EPoSS Annual Forum 2015 CY - Leuven, Belgium DA - 2015-10-11 PY - 2015 AN - OPUS4-35059 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Zientek, Nicolai A1 - Paul, Andrea T1 - qNMR forever – reference material metrology at high pressures and high purities N2 - Due to recent advances in technical developments of NMR instruments such as acquisition electronics and probe design, detection limits of components in liquid mixtures were improved into the lower ppm range (approx. 5–10 ppm amount of substance). This showed that modern NMR equipment is also suitable for the observation of hydrocarbon samples in the expanded fluid phase or gas phase. Since Quantitative NMR spectroscopy (qNMR) is a direct ratio method of analysis without the need of calibration it was used to determine impurities in appropriate liquid and liquefied hydrocarbon isomers up to C6, which are used for preparation of primary gas standards, e.g., natural gas or exhaust gas standards. At the same time it is possible to yield structural information with a minimum of sample preparation. Thus, cross contaminations between different isomers of the observed hydrocarbons and their (NMR-active) impurities can be identified and quantified. In general, most quantitative organic chemical measurements rely on the availability of highly purified compounds to act as calibration standards. The traceability and providence of these standards is an essential component of any measurement uncertainty budget and provides the final link of the result to the units of measurement, ideally the SI. The more recent increase in the use of qNMR for the direct assessment of chemical purity however can potentially improve the traceability and reduce the uncertainty of the measured chemical purity at a reduced cost and with less material. For example the method has beneficially been used by National Measurement institutes for recent CCQM comparisons including the CCQM–K55 series of purity studies. Traditional ‘indirect’ methods of purity analysis require that all impurities are identified and quantified, leading to a minimum of 4 individual analytical methods (organic impurities, water, solvents, inorganic residue). These multiple technique approaches measure an array of different chemical impurities normally present in purified organic chemical compounds. As many analytical methodologies have compound-specific response factors, the accuracy and traceability of the purity assessment is dependent on the availability of reference materials of the impurities being available. qNMR provides the most universally applicable form of direct purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. The development of CRMs addressing qNMR specific measurement issues will give analysts compounds ideally suited for the analytical method and also provide full characterisation of qNMR related parameters to enable more realistic uncertainty budgets. These materials will give users the tools to exploit qNMR more easily and enable them to speed up analytical method development and reduce the time and financial burden of multiple analytical testing. T2 - 3rd Practical Application of NMR in Industry Conference (PANIC) 2015 CY - La Jolla, CA, USA DA - 09.02.2015 KW - qNMR KW - Quantitative NMR-Spektroskopie KW - Reference Material KW - Metrology PY - 2015 AN - OPUS4-36144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Zientek, Nicolai A1 - Meyer, Klas A1 - Kern, Simon A1 - Paul, Andrea T1 - Quantitative and online NMR Spectroscopy at BAM N2 - Online NMR spectroscopy, Determination of impurities of fluids, NMR process Monitoring, purity assessment T2 - NMR-Kolloquium Buchs CY - Buchs, Switzerland DA - 29.05.2015 KW - qNMR KW - Quantitative NMR-Spektroskopie KW - Online NMR Spectroscopy KW - Reaction monitoring KW - Reference material KW - Metrology PY - 2015 AN - OPUS4-36143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Innovationen in der Prozessanalytik – Welches sind die neuen Herausforderungen? N2 - Der Vortrag stellt die aktuellen Forschungsschwerpunkte zum Thema Prozessanalytik an der Bundesanstalt für Materialforschung und -prüfung (BAM) vor und nennt aktuelle Entwicklungsfelder mit dem Ziel gemeinsamer F&E-Projekte. Zunächst wird die Prozessindustrie und ihre Wertschöpfungskette vorgestellt. Daraus ergibt sich eine Motivation für Prozessanalytik. Zwischen der Prozessanalytik in der Pharmazeutische Industrie und der Chemischen Industrie bzw. Verfahrenstechnik gibt es Unterschiede, die herausgearbeitet werden. Der Vortrag schließt mit Technologiewünschen und Technologievisionen und nennt Konkrete Beispiele für Visionen für PAT, insbesondere im Kontext des Zukunftsprojekts „Industrie 4.0“ T2 - Innovationen entwickeln – Von der Idee bis zum Projektstart CY - Göttingen, Germany DA - 11.12.2014 KW - Prozessanalytik KW - Prozessindustrie KW - Innovationen KW - Pharmazeutische Industrie KW - Technologiewünsche KW - Technologievisionen KW - Industrie 4.0 PY - 2014 AN - OPUS4-36146 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Zientek, Nicolai T1 - Towards online reaction monitoring with fully automated NMR data evaluation and modelling - Current results from simultaneous 19F-1H medium resolution NMR experiments N2 - NMR Process Monitoring Towards an automated field integration T2 - 3rd Practical Applications of NMR in Industry Conference (PANIC) - Mestrelab users' meeting CY - La Jolla, CA, USA DA - 08.02.2015 KW - Online NMR spectroscopy KW - Reaction monitoring KW - Prozessanalytik KW - Process analytical technology PY - 2015 AN - OPUS4-36145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Forschung und Entwicklung für Prozessanalytik und Automatisierung in der Prozessindustrie N2 - Neue Prozess-Sensoren für neue Produktionskonzepte. Wie entsteht Innovation? Forschungsimpulse aus der Technologie-Roadmap „Prozess-Sensoren 2015+“. Herausforderungen durch das Zukunftsprojekt „Industrie 4.0“. Technologie-Roadmap „Prozess-Sensoren 4.0“ T2 - ACHEMA 2015: Automation im Dialog – Meet the experts CY - Frankfurt a. M., Germany DA - 15.06.2015 KW - Industrie 4.0 KW - Smart Sensors KW - Smarte Sensoren KW - Process Analytical Technology KW - Prozessanalytik PY - 2015 AN - OPUS4-36142 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - qNMR spectroscopy has grown up to an original discipline – a review of recent international activities N2 - Quantitative NMR Spectroscopy (qNMR) provides the most universally applicable form of direct purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. Broadly accepted validation methods of qNMR spectroscopy will give users the tools to exploit qNMR more easily and enable them to speed up analytical method development and reduce the time and financial burden. The first initiative towards a worldwide agreement goes back to a panel discussion at PANIC 2014 (Practical Applications of NMR in Industry Conference) in Chicago. Since that, the Validation Workshop takes place following the PANIC Conference each year, last in 2017 with a turnout of over 50 people. The group aims at identifying a network of NMR people concerned with validation that can ultimately assist each other through the validation process, harmonize the terminology and a standard approach for NMR validations and position the guidelines produced by consensus of the NMR community so that accreditation agencies can use this process. T2 - qNMR Minisymposium CY - Baveno, Italy DA - 21.09.2017 KW - qNMR KW - Quantitative NMR Spectroscopy KW - Purity Analysis KW - SMASH KW - qNMR Summit PY - 2017 AN - OPUS4-42148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael ED - Pinnow, C. J. ED - Schäfer, S. T1 - "Prozess‐Sensoren 4.0" – Chancen für neue Automatisierungskonzepte und neue Geschäftsmodelle in der Prozessindustrie N2 - Prozess-Sensoren 4.0 vereinfachen ihre Einbindung über Plug and Play, obwohl sie komplexer werden. Sie bieten Selbstdiagnose, Selbstkalibrierung und erleichterte Parametrierung. Über die Konnektivität ermöglichen die Prozess-Sensoren den Austausch ihrer Informationen als Cyber-physische Systeme mit anderen Prozess-Sensoren und im Netzwerk. Der Aufbruch von der aktuellen Automation zum smarten Sensor hat bereits begonnen. Automatisierungstechnik und Informations- und Kommunikationstechnik (IKT) verschmelzen zunehmend. Wenn die Prozessindustrie dieses nicht definiert, tun es andere. Für die weitere Entwicklung von der Ist‐Situation zu einer Industrie-4.0-Welt in der Prozessindustrie werden mehrere Szenarien diskutiert. Diese reichen vom erleichterten Abruf sensorbezogener Daten über zusätzliche Kommunikationskanäle zwischen Sensor und mobilen Endgeräten über vollständig bidirektionale Kommunikation bis hin zur Einbindung der Cloud und des Internets in virtualisierte Umgebungen. Um zu einer störungsfreien Kommunikation aller Sensoren untereinander zu kommen, muss mindestens ein einheitliches Protokoll her, das alle Sensoren sprechen und verstehen. Der derzeit greifbarste offengelegte Standard, der moderne Kommunikationsanforderungen erfüllt, ist OPC Unified Architecture (OPC-UA). Viele halten das Sortieren der Kommunikationsstandards für eines der wesentlichen Errungenschaften von Industrie 4.0. Eine Topologie für smarte Sensoren, das Zusammenwirken mit daten- und modellbasierte Steuerungen bis hin zur Softsensorik sowie weitere Anforderungen an Sensoren sind jedoch heute noch nicht angemessen beschrieben. Wir müssen jetzt schnell die Weichen für eine smarte und sichere Kommunikationsarchitektur stellen, um zu einer störungsfreien Kommunikation aller Sensoren auf Basis eines einheitlichen Protokolls zu kommen, welches alle Sensoren ausgeben und verstehen. Aktuelle und zukünftige öffentliche Förderung von Industrie 4.0-Projekten sind eine gute Investition. Wegen der hohen Komplexität und Interdisziplinarität gelingt die Umsetzung nur gemeinsam zwischen Anwendern aus der Prozessindustrie, Software- und Geräteherstellern und Forschungsgruppen. Anwender sind gefragt, diese neue Technologie durch eine beschleunigte Validierung und Akzeptanz umzusetzen. Sie erhalten die einzigartige Chance, ihre Prozesse und Anlagen wettbewerbsfähig zu halten. Kooperativ betriebenen F&E-Zentren und gemeinsam anerkannten Applikationslaboren kommt dafür eine hohe Bedeutung zu. T2 - Tagung Industrie 4.0 - "Safety und Security - Mit Sicherheit gut vernetzt", Hochschule für Technik und Wirtschaft CY - Berlin, Germany DA - 28.04.2017 KW - Prozessanalytik KW - Online-NMR-Spektroscopie KW - Industrie 4.0 KW - Automatisierung KW - Prozessindustrie KW - Smarte Sensoren KW - Sensoren PY - 2017 SN - 978-3-410-26406-4 SP - 135 EP - 150 PB - Beuth CY - Berlin AN - OPUS4-43436 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Using Smart Sensors and Modular Production Units - For Sustainable and Flexible Production of High Quality Chemicals and Pharmaceuticals N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. The talk also generally covers current aspects of high-field and low-field online NMR spectroscopy for reaction monitoring and process control giving also an overview on direct dissolution studies of API cocrystals. T2 - Pfizer Analytical Chemistry Seminar CY - Pfizer Global Research & Development, Groton, CT, USA DA - 01.03.2018 KW - Online NMR Spectroscopy KW - Process sensors KW - Process analytical technology KW - Indirect Hard Modeling KW - Dissolution studies KW - CONSENS PY - 2018 AN - OPUS4-44347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Paul, Andrea A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Illner, M. A1 - Müller, D. A1 - Esche, E. A1 - Wozny, G. T1 - Prozess-Spektroskopie in Mikroemulsionen für das Online-Monitoring einer homogenen Hydroformylierungsanlage N2 - Homogen katalysierte Reaktionsschritte sind ein wichtiges Werkzeug in der chemischen Industrie. Durch die milden Reaktionsbedingungen hinsichtlich Temperatur und Druck bei gleichzeitig hoher Selektivität bieten diese die Möglichkeit energieeffizienter und ressourcenschonender Produktionsschritte. Eine der wichtigsten industriellen Anwendungen bildet die Hydroformylierung. Hier besteht das Katalysatorsystem meist aus Übergangsmetallkomplexen, vorwiegend Kobalt und Rhodium, die zur Steuerung der Selektivität und Löslichkeit mit mehrzähnigen Liganden koordiniert sind. Diese Komplexe liegen für eine effiziente Katalysator-rückführung in wässriger Lösung vor, was jedoch die Anwendbarkeit auf kurzkettige Edukte mit hinreichender Wasserlöslichkeit beschränkt. Ein möglicher Lösungsansatz für die Verwendung langkettiger Alkene ist die Umsetzung der Reaktion in einer Mikroemulsion. Durch die gesteigerte Phasen-grenzfläche besteht ein effektiver Kontakt von Katalysator und Reaktanden bei gleichzeitiger Möglichkeit der Produktseparation durch Phasentrennung, während der Katalysator dem Reaktionsschritt zurückgeführt wird und das Verfahren damit wirtschaftlich macht. Am Beispiel der Reaktion von 1-Dodecen zu Tridecanal wird der Einsatz von Online-NMR- und -Raman-Spektroskopie für die Prozessanalytik (sowie Applikation von komplexen Regelungskonzepten) innerhalb eines mizellaren Systems demonstriert. Ein speziell konzipierter Laboraufbau ermöglicht die Durchführung von Experimenten unter Prozessbedingungen für die in Mikroemulsionen äußerst anspruchsvolle Entwicklung und Kalibrierung von multivariaten Modellen für die Raman-Spektroskopie. Diese konnten anschließend im Rahmen einer mehrtägigen Betriebs-studie einer Miniplant am realen technischen System erprobt werden. T2 - Bruker Optics Anwendertreffen 2017 CY - Ettlingen, Germany DA - 07.11.2017 KW - Prozessanalytik KW - Reaktionsmonitoring KW - Industrie 4.0 KW - Online-Raman-Spektroskopie KW - Online-NMR-Spektroskopie KW - Hydroformylierung KW - Mikroemulsionen PY - 2017 AN - OPUS4-42753 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Colson, K. A1 - Schönberger, T. T1 - The q in NMR – a review of recent international activities N2 - Quantitative NMR Spectroscopy (qNMR) provides the most universally applicable form of direct purity determination without need for reference materials of impurities or the calculation of response factors for all samples exhibiting suitable NMR properties. Broadly accepted validation methods of qNMR spectroscopy gives users tools to exploit qNMR more easily and enables rapid analytical method development and reduce time and financial burdens. The first initiative towards a worldwide agreement goes back to a panel discussion at PANIC 2014 (Practical Applications of NMR in Industry Conference) in Chicago. Since that time, the Validation Workshop takes place each year following the PANIC Conference, last in 2017 with a turnout of over 65 people. The group aims to identifying a network of NMR people concerned with validation that can ultimately assist each other through the validation process, harmonize the terminology and a standard approach for NMR validations and position the guidelines produced by consensus of the NMR community so that accreditation agencies can use this process. The talk briefly summarises the outcome of the former PANIC Validation Workshops (2015, 2016, and 2017) as well as the recent satellite meetings including the qNMR meeting held at Spectral Service in Cologne, Germany (June 2016), a validation workshop at SMASH (La Jolla, USA, September 2016), the qNMR Summit with USP in Rockville, USA (October 2016), the qNMR Summit at BAM in Berlin, Germany (March 2017), and the qNMR Minisymposium at SMASH in Baveno, Italy (September 2017). Upcoming activities will be a qNMR Summit held by JP and JEOL in Tokyo, Japan (January 29th-30th, 2018) and a qNMR Summit at the University of Würzburg, Germany (planned for October 2018). The next PANIC takes place March 4th-8th, 2018 in La Jolla (San Diego), CA, USA. Further Information can be found under: http://www.validnmr.com T2 - qNMR Day CY - Politecnico di Bari, Bari, Italy DA - 24.11.2017 KW - qNMR KW - Quantitative NMR Spectroscopy KW - NMR validation KW - qNMR Summit KW - Direct purity determination PY - 2017 UR - http://www.gidrm.org/index.php/activities/workshops/2017-workshops/qnmr-day-a-gidrm-organized-in-cooperation-with-girm AN - OPUS4-43118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - qNMR metrology and current "primary" reference material activities N2 - In general, most quantitative organic chemical measurements rely on the availability of highly purified compounds to act as calibration standards. The traceability and providence of these standards is an essential component of any measurement uncertainty budget and provides the final link of the result to the units of measurement, ideally the SI. The more recent increase in the use of qNMR for the direct assessment of chemical purity however can potentially improve the traceability and reduce the uncertainty of the measured chemical purity at a reduced cost and with less material. For example, the method has beneficially been used by National Metrology Institutes for comparisons including comparisons on CCQM (Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology, www.bipm.org). First comparisons started 1998 with CCQM-P3 (Organics in solution) or CCQM-P35 (2002, EtOH in solution), were underpinned by a broad range of polarity and molecular size (CCQM–K55 series of purity studies including Valine, Aldrin, or Folic acid) and were continued with the recent pilot studies CCQM-P150 (2014, purity of Dimethyl sulfone) or CCQM-P150b (2017, purity of Pyributicarb). Traditional ‘indirect’ methods of purity analysis require that all impurities are identified and quantified, leading to a minimum of four individual analytical methods (organic impurities, water, solvents, inorganic residue). These multiple technique approaches measure an array of different chemical impurities normally present in purified organic chemical compounds. As many analytical methodologies have compound-specific response factors, the accuracy and traceability of the purity assessment is dependent on the availability of reference materials of the impurities being available. qNMR provides the most universally applicable form of direct purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. The development of CRMs addressing qNMR specific measurement issues will give analysts compounds ideally suited for the analytical method and also provide full characterisation of qNMR related parameters to enable more realistic uncertainty budgets. These materials will give users the tools to exploit qNMR more easily and enable them to speed up analytical method development and reduce the time and financial burden of multiple analytical testing. Due to recent advances in technical developments of NMR instruments such as acquisition electronics and probe design, detection limits of components in liquid mixtures were improved into the lower ppm range (approx. 5–10 ppm amount of substance) qNMR studies increasingly attract broader interest. T2 - qNMR Day CY - Politecnico di Bari, Bari, Italy DA - 24.11.2017 KW - qNMR KW - Quantitative NMR spectroscopy KW - qNMR metrology KW - Primary reference material KW - Comparison study KW - Direct purity determination PY - 2017 UR - http://www.gidrm.org/index.php/activities/workshops/2017-workshops/qnmr-day-a-gidrm-organized-in-cooperation-with-girm AN - OPUS4-43119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Wander, Lukas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Mathematical and statistical tools for online NMR spectroscopy in chemical processes N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied, which require excessive calibration effort. NMR spectroscopy has a high potential for direct loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and harsh environments for advanced process Monitoring and control, as demonstrated within the European Union’s Horizon 2020 project CONSENS. We present a range of approaches for the automated spectra analysis moving from conventional multivariate statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants or derivatives and robust automation schemes. T2 - 13. Dresdner Sensor Symposium CY - Dresden, Germany DA - 04.12.2017 KW - Online NMR spectroscopy KW - Process control KW - Partial least squares regression KW - Indirect hard modeling KW - Quantum mechanics KW - First principles PY - 2017 UR - https://www.ama-science.org/proceedings/details/2748 SN - 978-3-9816876-5-1 DO - https://doi.org/10.5162/13dss2017/P2.07 SP - P2, 209 EP - 212 PB - AMA Service GmbH CY - Berlin AN - OPUS4-43254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -