TY - CONF A1 - Meyer, Klas A1 - Panne, Ulrich A1 - Rademann, K. A1 - Maiwald, Michael T1 - Quantitative NMR Spektroskopie unter Druck - Anwendungen an fluiden und gasförmigen technischen Mischungen N2 - Die quantitative NMR-Spektroskopie (qNMR) gewinnt in den letzten Jahren immer mehr an Bedeutung, speziell hinsichtlich der Anwendung auf komplexe Fragestellungen der analytischen Chemie. Ein großer Vorteil dieser Methode ist die Möglichkeit der Relativquantifizierung durch das „Zählen von Kernspins" in der Probe. Unter der Voraussetzung eines korrekt ausgeführten NMR-Experiments ist so der direkte Vergleich von Signalflächen im Spektrum möglich, ohne dass zuvor zwingend eine Kalibrierung notwendig ist. T2 - 8. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 23.02.2014 PY - 2014 SN - 978-3-9816380-1-1 SP - 20 AN - OPUS4-32090 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, Z. A1 - Han, Q. A1 - Wang, D. A1 - Macé, T. A1 - Kipphardt, Heinrich A1 - Maiwald, Michael A1 - Tuma, Dirk A1 - Uehara, S. A1 - Akima, D. A1 - Shimosaka, T. A1 - Jung, J. A1 - Oh, S.-H. A1 - van der Veen, A. A1 - van Wijk, J.I.T. A1 - Ziel, P. R. A1 - Konopelko, L. A1 - Valkova, M. A1 - Mogale, D.M. A1 - Botha, A. A1 - Brewer, P. A1 - Murugan, A. A1 - Minnaro, M.D. A1 - Miller, M. A1 - Guenther, F. A1 - Kelly, M.E. T1 - CCQM K101 Final report international comparison CCQM-K101:Oxygen in nitrogen-a track B comparison and that the matrix contains argon N2 - This key comparison aims to assess the capabilities of the participants to determine the amount-of-substance fraction oxygen in nitrogen. The GAWG has classified this as a track B comparison, due to the unexpected 50 μmol/mol argon mole fraction content of the transfer standards, which effects the achievable performance of some measurement techniques such a GC-TCD. The separation of oxygen and argon is challenging, and not all systems in use are equally well designed for it. As this analytical challenge due to a substantial fraction of argon in the transfer standards became a reality, the Gas Analysis Working Group (GAWG) decided to qualify this key comparison as a regular key comparison and not as a core comparison, which may be used to support calibration and measurement capabilities (CMCs) for oxygen in nitrogen, or for oxygen in nitrogen mixtures containing argon only (see also the section on support to CMCs). KW - CCQM-K101 KW - Gas analysis PY - 2016 UR - http://iopscience.iop.org/article/10.1088/0026-1394/53/1A/08013 SN - 1681-7575 SN - 0026-1394 VL - 53 IS - Techn Suppl SP - 08013, 1 EP - 71 PB - IOP publishing AN - OPUS4-40013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Kipphardt, Heinrich A1 - Tuma, Dirk A1 - Khanipour, Peyman T1 - Sensors, Analytics and Certified Reference Materials safeguarding the quality infrastructure in the hydrogen economy N2 - The prerequisites for a successful energy transition and the economic use of hydrogen as a clean green energy carrier and for H2 readiness are a rapid market ramp-up and the establishment of the required value chains. Reliable quality and safety standards for innovative technologies are the prerequisite for ensuring supply security, for environmental compatibility and sustainable climate protection, for building trust in these technologies and thus enable product and process innovations. With the Competence Centre "H2Safety@BAM", BAM is creating the safety-related prere-quisites for the successful implementation of hydrogen technologies at national as well as European level. BAM uses decades of experience in dealing with hydrogen technologies to develop the necessary quality and safety standards. The presentation will draw a bow from the typical basic tasks of BAM in the field of competence "Sensors, analytics and certified reference materials", such as maintenance and dissemination of the national gas composition standards for calorific value determination as Designated Institute for Metrology in Chemistry within the framework of the Metre Convention, to the further development of measurement and sensor technology for these tasks. For the certification of reference materials, a mostly slow and time-consuming but solid reference analysis is common. With hydrogen and its special properties, completely new requirements are added. In addition, fast and simple online analysis is required for process control, for example to register quality changes, e.g., during load changes or refuelling processes. T2 - Indo-German International Conference on Metrology for the Deployment of Green Hydrogen and Renewable Fuels in India CY - Online meeting DA - 04.04.2022 KW - Quality Infrastructure KW - Gas Reference Material KW - Hydrogen KW - Energy Gases KW - Sensors KW - Hydrogen Storage Materials PY - 2022 UR - https://www.imeko-gh2fuels.ptb.de/ AN - OPUS4-54596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - van der Veen, A. M H A1 - Zalewska, E. T. A1 - Kipphardt, Heinrich A1 - Beelen, R. R. A1 - Tuma, Dirk A1 - Maiwald, Michael A1 - Fükő, J. A1 - Büki, T. A1 - Szilágyi, Z. N. A1 - Beránek, J. A1 - Cieciora, D. A1 - Ochman, G. A1 - e.t al., T1 - Metrologia International Bureau of Weights and Measures (BIPM), find out more - KEY COMPARISON International comparison CCQM-K118 natural gas N2 - CCQM-K118 was an international key comparison on natural gas composition with two types of gases, i.e., a low calorific hydrogen-enriched natural gas and a high calorific LNG type of gas. There were 14 participating laboratories. The traveling standards (i.e., 14 mixtures each) were obtained from an external source and checked for homogeneity and stability before and after the participants' measurements at the two coordinating laboratories. The data evaluation was performed using a consensus value and a laboratory effect model. The results of the participants were benchmarked against a key comparison reference value computed from the largest consistent subset (LCS) of the submitted results, adjusted for the differences between the travelling standards. For the first time in a key comparison in gas analysis, the model included a term to account for excess variability in the LCS. Most of the participants reported one or a few (slightly) discrepant results. Partly this is due to the heterogeneity and heteroscedasticity of the datasets. In all, the results in this key comparison demonstrate the good comparability of the national measurement standards for natural gas composition maintained by the participating NMIs. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA). To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - CCQM-K PY - 2022 DO - https://doi.org/10.1088/0026-1394/59/1A/08017 SN - 0026-1394 VL - 59 IS - 1A PB - IOP Publishing LTD AN - OPUS4-56308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, Rudibert A1 - Maiwald, Michael ED - Maiwald, Michael T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual cam-paigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The re-sulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via compara-bly straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algo-rithm to interpret the ob-tained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16 inch polymer tubing working as a flow cell. Single scan 1H spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. T2 - 12. Kolloquium des Arbeitskreises Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - “Click” chemistry KW - Online NMR KW - Online monitoring PY - 2016 SP - 72 EP - 74 AN - OPUS4-38385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael ED - Herwig, Christoph T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently, research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algorithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16-inch polymer tubing working as a flow cell. Single scan 1H NMR spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in non-deuterated solvents while its time-resolved behaviour was characterised with step tracer experiments. Through the application of spectral modeling the signal area for each reactant can be deconvoluted in the online spectra and thus converted to the respective concentrations or molar ratios. The signals which were suitable for direct integration were used herein for comparison purposes of both methods. T2 - 11. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 12.03.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Process Control KW - Process Analytical Technology KW - CONSENS KW - Click Chemistry PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435531 SP - 33 EP - 35 PB - Gesellschaft Deutscher Chemiker (GDCh) CY - Frankfurt a. M. AN - OPUS4-43553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -