TY - CONF A1 - Maiwald, Michael T1 - Design and validation of a compact NMR analyser N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - ANAKON 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Online NMR spectroscopy KW - Low-Field NMR spectroscopy KW - Modular production plants KW - Process analytical technology PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-396960 AN - OPUS4-39696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Design and validation of a compact online NMR module N2 - Monitoring chemical reactions is the key to process control. Today, mainly optical online methods are applied, which are calibration intensive. NMR spectroscopy has a high potential for direct loop process control while cutting the calibration and validation needs to an minimum and thus exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and harsh environments for advanced process monitoring and control. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Data analysis techniques are available but currently mostly used for off-line data analysis to detect the causes of variations in the product quality. This is addressed within the EU’s Research Project CONSENS by the development and integration of a smart NMR module for process monitoring. The presented NMR module is provided in a mobile explosion proof housing and involves a compact spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction), and evaluation. Such “smart sensors” provide the basis for the future project “Industrie 4.0”, and Industrial Internet of Things (IIoT), along with current requirements to process control, model based control, or soft sensing. The module transforms the acquired online spectra of various technically relevant reactions to either conventional 4‒20 mA signals as well as WiFi based OPC-UA communication protocols, which enables NMR-based advanced process control and funny discussions with plant managers along with automation and safety engineers. T2 - Small Molecule NMR Conference (SMASH) CY - Baveno, Italy DA - 17.09.2017 KW - Online NMR spectroscopy KW - CONSENS KW - Reaction monitoring KW - Process control KW - Process analytical technology KW - Indirect hard modeling KW - Industrie 4.0 KW - Smart sensors KW - SMASH PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-419473 UR - http://www.smashnmr.org/conference/program AN - OPUS4-41947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Maiwald, Michael A1 - Schukar, Marcus T1 - Beiträge der Prozessanalytik und Sensorik zur Sicherheit in Wasserstofftechnologien N2 - Intelligent sensor systems, certified reference materials and instrumental analytical-chemical methods contribute to safety and functionality in hydrogen technologies. This article gives a brief overview of SensRef activities in the Competence Centre H2Safety@BAM on the issues: Analytical methods for the determination of hydrogen purity, certified reference materials as measurement standards with regard to gas quality (primary calibrators) of BAM, test methods for gas sensor systems to detect hydrogen in air as well as the application of fibre-optic sensor systems to monitor the expansion and ageing behaviour of composite containers in hydrogen technologies. T2 - Berlin Brandenburger Optik-Tag "Einsatz von Sensorik und Mikroelektronik in der Wasserstoffwirtschaft" CY - Online meeting DA - 29.11.2021 KW - H2Safety@BAM KW - SensRef KW - Gas analysis KW - Gas purity KW - Fibre-optic sensors KW - Sensor response KW - Certified reference materials PY - 2021 AN - OPUS4-54138 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael A1 - Völker, J. T1 - Wir dürfen uns nicht zu sicher werden N2 - Die Erwartungen der Prozessindustrie an die NAMUR Open Architecture sind groß, schließlich soll das Konzept der Garant für die digitale Transformation der Branche sein. Im atp-Interview warnt Dr. Michael Maiwald, Fachbereichsleiter „Prozessanalytik“ an der Bundesanstalt für Materialforschung und -prüfung (BAM), allerdings davor, NOA als Allheilmittel zu betrachten. KW - Prozessindustrie KW - NAMUR Open Architecture KW - NOA KW - Industrie 4.0 KW - Digitale Transformation PY - 2019 UR - https://www.atpinfo.de/produkte/2019-atp-magazin-10-2019/ SN - 2190-4111 IS - 10 SP - 40 EP - 43 PB - Vulkan-Verlag GmbH CY - Essen AN - OPUS4-49501 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Grümbel, F. T1 - Aktuelle Aktivitäten und Anwendungsbeispiele zur Nutzung Smarter Sensoren N2 - Eine der vielen Vorzüge Smarter Sensoren und Aktoren ist Bereitstellung zusätzlicher Informationen, auf die zukünftig neben den Hauptsignalen zugegriffen werden kann. In den Arbeitskreisen 3.6 und 3.7 wird dieses im wechselseitigen Austausch mit Geräte- und Softwareherstellern und Forschungseinrichtungen vorangetrieben. Wir berichten kurz über den Stand der Diskussionen anhand von Beispielen und möchten in einem Open Space Workshop Meinungen und Ideen aufgreifen. T2 - NAMUR Hauptsitzung 2019 CY - Bad Neuenahr, Germany DA - 07.11.2019 KW - Prozessindustrie KW - Prozesskontrolle KW - Prozessanalytik KW - Smarte Sensoren KW - Industrie 4.0 KW - Digitalisierung PY - 2019 AN - OPUS4-49550 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Global PAT Meeting Bayer AG CY - Berlin, Germany DA - 12.11.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - CONSENS PY - 2019 AN - OPUS4-49602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Online NMR spectroscopy for process analytical applications and aspects on automation and digitization of process industry N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts while being based on “chemical” information. As an example, a fully automated NMR sensor is introduced, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. Therefore, a commercially available benchtop NMR spectrometer was adapted to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. A full integration and intelligent interconnection of such systems and processes progresses only hesitantly. The talk should encourage to re-think digitization of process industry based on smart sensors, actuators, and communication more comprehensively and informs about current technical perspectives such as the “one-network paradigm”, edge computing, or virtual machines. These give smart sensors, actuators, and communication a new perspective. T2 - Advances in Process Analytics and Control Technology 2019 Conference (APACT) CY - Chester, United Kingdom DA - 30.04.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Process Industry KW - Distributed Networks KW - Digital Twin PY - 2019 AN - OPUS4-47907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR spectroscopy: A versatile tool for automated continuous-flow production of chemicals and pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - GDCh-Seminar der Universität Bielefeld CY - Bielefeld, Germany DA - 17.01.2019 KW - Process analytical technology KW - Process industry KW - Online NMR spectroscopy KW - Indirect hard modeling KW - CONSENS KW - Fresenius lecture PY - 2019 AN - OPUS4-47221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Seminar of Research Department „Life, Light & Matter“ of the InterdisciplinaryFaculty of the University of Rostock CY - Rostock, Germany DA - 08.01.2019 KW - Process Analytical Technology KW - Low-field NMR Spectroscopy KW - Online NMR Spectroscopy KW - Modular Production KW - Process Industry KW - Fresenius Lecture PY - 2019 AN - OPUS4-47166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jacobasch, Stefan A1 - Duffner, Eric A1 - Goedecke, Thomas A1 - Portella, Pedro Dolabella A1 - Mair, Georg W. A1 - Schendler, Thomas A1 - Gradt, Thomas A1 - Askar, Enis A1 - Bartholmai, Matthias A1 - Schröder, Volkmar A1 - Maiwald, Michael A1 - Holtappels, Kai A1 - Tschirschwitz, Rico A1 - Neumann, Patrick P. T1 - Unser Beitrag zum Thema Wasserstoff N2 - Die BAM ist nahezu über die gesamte Wertschöpfungskette hinweg wissenschaftlich tätig. Von der sicheren und effizienten Wasserstofferzeugung (POWER-to-GAS), über die (Zwischen-)Speicherung von Wasserstoff in Druckgasspeichern bis hin zum Transport bspw. mittels Trailerfahrzeug zum Endverbraucher. Komplettiert werden die Aktivitäten der BAM durch die sicherheitstechnische Beurteilung von wasserstoffhaltigen Gasgemischen, die Verträglichkeitsbewertung von Werkstoffen bis hin zur Detektion von Wasserstoffkonzentrationen über geeignete Sensorik, auch mittels ferngesteuerter Messdrohnen (sog. UAV-Drohnen). Zudem untersucht die BAM proaktiv Schadensrisiken und Unfallszenarien für die Sicherheitsbetrachtung, um mögliche Schwachstellen aufzeigen und potenzielle Gefährdungen erkennen zu können. KW - Wasserstoff KW - Wasserstofferzeugung KW - Energiespeicherung KW - Gasdetektion KW - Risikoanalyse KW - Power-to-Gas KW - Explosionsschutz KW - Tribologie KW - Druckgasspeicher KW - Glasspeicher KW - Gassensorik KW - Mini-UAV PY - 2019 SP - 1 CY - Berlin AN - OPUS4-47960 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Jurtz, N. A1 - Thiede, Tobias A1 - Kraume, M. A1 - Maiwald, Michael T1 - Design and validation of an additively manufactured flowCell–static mixer combination for inline NMR spectroscopy N2 - There have been an increasing number of publications on flow chemistry applications of compact NMR. Despite this, there is so far no comprehensive workflow for the technical design of flow cells. Here, we present an approach that is suitable for the design of an NMR flow cell with an integrated static mixing unit. This design moves the mixing of reactants to the active NMR detection region within the NMR instrument, presenting a feature that analyses chemical reactions faster (5–120 s region) than other common setups. During the design phase, the targeted mixing homogeneity of the components was evaluated for different types of mixing units based on CFD simulation. Subsequently, the flow cell was additively manufactured from ceramic material and metal tubing. Within the targeted working mass flow range, excellent mixing properties as well as narrow line widths were confirmed in validation experiments, comparable to common glass tubes. KW - Inline NMR Spectroscopy KW - Integrated Processes KW - Reaction Monitoring KW - Process Analytical Technology KW - Flow Chemistry KW - Static Mixing KW - Modular Production PY - 2019 UR - https://pubs.acs.org/doi/abs/10.1021/acs.iecr.9b03746 DO - https://doi.org/10.1021/acs.iecr.9b03746 SN - 0888-5885 SN - 1520-5045 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. VL - 58 IS - 42 SP - 19562 EP - 19570 PB - American Chemical Society CY - Washington AN - OPUS4-49041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Analysis of dynamic systems N2 - Monitoring specific information (i.e., physico-chemical properties, chemical reactions, etc.) is the key to chemical process control when looking at dynamic systems, and quantitative online NMR spectroscopy is the method of choice for the investigation and understanding of dynamic multi-component systems. NMR provides rapid and non-invasive information, and due to the inherent linearity between sample concentration and signal intensity, peak areas can be directly used for quantification of multiple components in a mixture (without the need for any further calibration). This is one of the most attractive features of quantitative NMR spectroscopy. With the launch of devices covering magnetic field strengths from 40 to 90 MHz, so called compact or benchtop NMR systems, this analytical method is now reaching a sufficient degree of compactness and operability for an application outside of very specialized laboratories. Whilst there are also many other tools available to examine various analytical parameters from dynamic processes, such as mass spectrometry, (near) infrared or Raman spectroscopy, each of these tools can only really be used independently. How can we examine and compare all data describing a particular chemical reaction? How can we visualize information rich, specific, or direct methods together with less specific but established analytical methods? And how can we transfer calibration information to the most appropriate process analytical method or method combination? Quantitative NMR spectroscopy (qNMR) has the potential to substitute offline laboratory analysis for calibration purposes by delivering quantitative reference data as an online method. The workshop briefly presents the current state of the art of the analysis of dynamic systems by online NMR spectroscopy and analytical data fusion, with the remaining time being used for questions and open discussion with the attendees. T2 - SMASH 2019 CY - Porto, Portugal DA - 22.09.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Data Analysis KW - SMASH PY - 2019 UR - https://www.smashnmr.org/ AN - OPUS4-49042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - GDCh-Kolloquium der Universität Ulm CY - Ulm, Germany DA - 28.11.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Process Industry KW - Automation PY - 2019 AN - OPUS4-49855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Maiwald, Michael ED - Meyer, Simon T1 - Voll integrierte und vernetzte Systeme und Prozesse - Perspektive: Smarte Sensorik, Aktorik und Kommunikation N2 - Unternehmen der chemischen Industrie müssen neuen Pfade beschreiten, um in einem veränderten Umfeld erfolgreich bestehen zu können. Dazu gehört insbesondere, das Potenzial digitaler Technologien zu nutzen. Die volle Integration und intelligente Vernetzung von Systemen und Prozessen kommt allerdings nur zögerlich voran. Dieser Beitrag ist ein Loblied auf die Feldebene. Er möchte dazu ermutigen, die Digitalisierung der Prozessindustrie auf Basis smarter Sensorik, Aktorik und Kommunikation ganzheitlicher zu denken und informiert über aktuelle technische Perspektiven, wie das Ein-Netzwerk-Paradigma, Ad-hoc-Vernetzungen, Edge-Computing, FPGAs, virtuelle Maschinen oder Blockchain. Diese geben smarter Sensorik, Aktorik und Kommunikation eine völlig neue Perspektive. KW - Smarte Sensoren KW - Smarte Aktoren KW - Digitalisierung KW - Prozessindustrie KW - Prozess-Sensoren 4.0 PY - 2019 SN - 978-3-8356-7436-3 SP - 28 EP - 40 PB - Vulkan-Verlag GmbH CY - Essen AN - OPUS4-50035 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR spectroscopy: A versatile tool for automated continuous-flow production of chemicals and pharmaceuticals N2 - Um in einem veränderten Umfeld erfolgreich bestehen zu können, müssen Chemieunternehmen neue Pfade beschreiten. Dazu gehört insbesondere das Potential digitaler Technologien. Mit flexiblen, modularen chemischen Vielzweck-Produktionsanlagen lassen sich häufig wechselnde Produkte mit kürzeren Vorlauf- und Stillstandzeiten zwischen den Kampagnen und dennoch hoher Qualität realisieren. Intensivierte, kontinuierliche Produktionsanlagen erlauben auch den Umgang mit schwierig zu handhabenden Substanzen. Grundvoraussetzung für solche Konzepte ist eine hochautomatisierte "chemische" Prozesskontrolle zusammen mit Echtzeit-Qualitätskotrolle, die "chemische" Informationen über den Prozess bereitstellt. In einem Anwendungsbeispiel wurde eine pharmazeutische Lithiierungsreaktion aus einer modularen Pilot-Anlage betrachtet und dabei die Vorzüge eines vollautomatischen NMR-Sensors untersucht. Dazu wurde ein kommerziell erhältliches Benchtop-NMR-Spektrometer mit Permanentmagnet auf die industriellen Anforderungen, wie Explosionsschutz, Feldkommunikation und vollautomatischer, robuster Datenauswertung angepasst. Der NMR-Sensor konnte schließlich erfolgreich im vollautomatischen Betrieb nach fortschrittlichen Regelkonzepten und für die Echtzeitoptimierung der Anlage getestet werden. Die NMR-Spektroskopie erwies sich als hervorragende Online-Methode und konnte zusammen mit einer modularen Datenauswertung sehr flexibel genutzt werden. Die Methode konnte überdies als zuverlässige Referenzmethode zur Kalibrierung konventioneller Online-Analytik eingesetzt werden. Zukünftig werden voll integrierte und intelligent vernetzte "smarte" Sensoren und Prozesse eine kontinuierliche Produktion von Chemikalien und Pharmazeutika mit vertretbaren Qualitätskosten möglich machen. T2 - Niederfeld-NMR-Spektroskopie: Ein universelles Werkzeug für automatisierte, kontinuierliche Produktion von Chemikalien und Pharmazeutika T2 - Fresenius-Lecture Hochschule Reutlingen CY - Reutlingen, Germany DA - 18.12.2019 KW - Prozessindustrie KW - Smarte Sensoren KW - Online-NMR-Spektroskopie KW - Digitalisierung KW - Datenanalyse PY - 2019 AN - OPUS4-50111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas T1 - NMR Spectroscopy for Online Monitoring and Process Control N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. The talk also generally covers current aspects of high-field and low-field online NMR spectroscopy for reaction monitoring and process control. T2 - Lonza Shared Best Practice Seminar CY - Visp, Switzerland DA - 26.02.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Compact NMR Spectroscopy KW - Quantitative NMR Spectroscopy PY - 2019 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-47453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Aus dem Labor in den Prozess: Anforderungen an Smarte Laborgeräte vor dem Hintergrund der Digitalisierung N2 - Im Vortrag werden Anforderungen und Lösungsvorschläge für das Labor der Zukunft diskutiert. Industrie 4.0 bzw. das Labor 4.0 hilft uns, komplexere Prozesse schneller umzusetzen. Entwicklung von Anlagen und Prozessen beginnt im Labor 4.0. Dazu werden offene, nicht proprietäre Schnittstellen und Standards bei Laborgeräten und Feldgeräten dringend benötigt. T2 - Branchentreff Chromatografie: Analytik gestern, heute – morgen? CY - Berlin, Germany DA - 30.09.2019 KW - Smarte Laborgeräte KW - Digitalisierung KW - Prozessanalytik KW - Labor 4.0 KW - Prozesslabor PY - 2019 UR - https://www.healthcapital.de/termine/termin/branchentreff-chromatografie-analytik-gestern-heute-morgen/ AN - OPUS4-49186 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR spectroscopy: A versatile tool for automated continuous-flow production of chemicals and pharmaceuticals N2 - Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. T2 - Process Development Seminar Bayer AG Dormagen CY - Dormagen, Germany DA - 14.01.2019 KW - Process analytical technology KW - Low-field NMR spectroscopy KW - Online NMR spectroscopy KW - CONSENS PY - 2019 AN - OPUS4-47197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Informationsmanagement in der Prozessindustrie auf Basis von Labor- und Produktionsdaten N2 - Die Wettbewerbsfähigkeit der Prozessindustrie basiert auf der Sicherung der geforderten Produktqualität bei einer optimalen Nutzung von Anlagen, Rohstoffen und Energie. Ein Weg zur wissensbasierten Produktion führt über die Betrachtung der wesentlichen Apparate-, Prozess- und Freigabedaten aus Betrieben und Labors. Das Potenzial dieser Daten wird heute vielfach noch nicht konsequent für ein umfassendes Verständnis der Produktion genutzt. Neben Fragen zur Datenerfassung, Datenkonnektivität und Datenintegrität müssen solche Daten für eine ganzheitliche Prozessanalyse zunächst mit Kontextinformationen zusammengebracht werden. Datenquellen enthalten Zeitwertpaare, aber auch diskrete Daten aus LIMS (Laboratory Information Management Systems) oder ELN (Electronic Laboratory Notebooks) und werden zunehmend durch 2D- und 3D-Daten aus der Chromatographie-Massenspektrometrie oder bildbasierter Analytik ergänzt. Für die automatisierte Merkmalsextraktion, etwa zur Extraktion chemischer Informationen aus den oben genannten Datenquellen werden multivariate Werkzeuge und Algorithmen genutzt. Multivariate Statistiken wie PCA (Principle Component Analysis), PLS (Partial Least Squares) und LDA (Latent Discriminant Analysis) bilden die erste Grundlage für die Datenanalyse. Für diese Verfahren sind heute Datenvorbehandlungsschritte nötig. Die Modellbildung geschieht manuell und ist sehr aufwendig. Können diese Daten im Zeitalter von ML (Machine Learning) und KI (Artificial Intelligence) anderweitig sinnvoll genutzt werden und ohne klassische Modellbildung? Die Bezeichnung „Big Data“ als Voraussetzung für datengetriebene Auswerteverfahren ist für die Prozessindustrie allerdings unpassend, denn auch bei mengenmäßig großen Datensätzen liegen für Kampagnen typischerweise nur Informationen über einige Batches mit einer Serie von Messdaten vor, die genügend Varianz für eine datengetriebene Auswertung aufweisen – nicht vergleichbar mit den Datenmengen im WWW oder von großen Internet-Konzernen. T2 - Bio-PAT-Workshop, Aktuelle Entwicklungen im Bereich PAT & Softsensortechnologien CY - Berlin, Germany DA - 04.12.2019 KW - Prozessindustrie KW - Digitalisierung KW - Datenanalyse KW - Datenvorbehandlung KW - Multivariate Datenanalyse PY - 2019 AN - OPUS4-49942 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Inês C.B. A1 - Al-Sabbagh, Dominik A1 - Meyer, Klas A1 - Maiwald, Michael A1 - Scholz, G. A1 - Emmerling, Franziska T1 - Insight into the Structure and Properties of Novel Imidazole-Based Salts of Salicylic Acid N2 - The preparation of new active pharmaceutical ingredient (API) multicomponent Crystal forms, especially co-crystals and salts, is being considered as a reliable strategy to improve API solubility and bioavailability. In this study, three novel imidazole-based salts of the poorly water-soluble salicylic acid (SA) are reported exhibiting a remarkable improvement in solubility and dissolution rate properties. All structures were solved by powder X-ray diffraction. Multiple complementary techniques were used to solve co-crystal/salt ambiguities: density functional Theory calculations, Raman and 1H/13C solid-state NMR spectroscopies. In all molecular salts, the Crystal packing interactions are based on a common charged assisted +N-H SA)...O-(co-former) hydrogen bond interaction. The presence of an extra methyl group in different positions of the co-former, induced different supramolecular arrangements, yielding salts with different physicochemical properties. All salts present much higher solubility and dissolution rate than pure SA. The most promising results were obtained for the salts with imidazole and 1-methylimidazole co-formers. KW - Salicylic acid KW - Imidazole KW - Salts KW - Powder X-ray diffraction KW - SsNMR KW - DFT PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502825 DO - https://doi.org/10.3390/molecules24224144 VL - 24 IS - 22 SP - 4144 PB - MDPI AN - OPUS4-50282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -