TY - JOUR A1 - Bremser, Wolfram A1 - Paul, Andrea A1 - Neugebauer, Michael A1 - Maiwald, Michael A1 - Brudel, M. T1 - Immer im Bild mittels Prozess-Spektroskopie - Spektroskopische Methoden für die Prozessanalytik PY - 2012 SN - 0016-3538 VL - 56 IS - 6 SP - 436 EP - 439 PB - GIT-Verlag CY - Darmstadt AN - OPUS4-26243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Balderas‐Xicohténcatl, Rafael A1 - Al Shakhs, Ali N. A1 - Berenguer‐Murcia, Ángel A1 - Buckley, Craig E. A1 - Cazorla‐Amorós, Diego A1 - Charalambopoulou, Georgia A1 - Couturas, Fabrice A1 - Cuevas, Fermin A1 - Fairen‐Jimenez, David A1 - Heinselman, Karen N. A1 - Humphries, Terry D. A1 - Kaskel, Stefan A1 - Kim, Hyunlim A1 - Marco‐Lozar, Juan P. A1 - Oh, Hyunchul A1 - Parilla, Philip A. A1 - Paskevicius, Mark A1 - Senkovska, Irena A1 - Shulda, Sarah A1 - Silvestre‐Albero, Joaquin A1 - Steriotis, Theodore A1 - Tampaxis, Christos A1 - Hirscher, Michael A1 - Maiwald, Michael T1 - Establishing ZIF‐8 as a reference material for hydrogen cryoadsorption: An interlaboratory study N2 - AbstractHydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H2 uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available. The metal‐organic framework ZIF‐8 is an ideal material possessing high thermal, chemical, and mechanical stability that reduces degradation during handling and activation. Here, we distributed ZIF‐8 pellets synthesized by extrusion to 9 laboratories equipped with 15 different experimental setups including gravimetric and volumetric analyzers. The gravimetric H2 uptake of the pellets was measured at 77 K and up to 100 bar showing a high reproducibility between the different laboratories, with a small relative standard deviation of 3–4 % between pressures of 10–100 bar. The effect of operating variables like the amount of sample or analysis temperature was evaluated, remarking the calibration of devices and other correction procedures as the most significant deviation sources. Overall, the reproducible hydrogen cryoadsorption measurements indicate the robustness of the ZIF‐8 pellets, which we want to propose as a reference material. KW - Physical and theoretical chemistry KW - Atomic and molecular physics, and optics PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594788 DO - https://doi.org/10.1002/cphc.202300794 SN - 1439-7641 SP - 1 EP - 7 PB - Wiley CY - Weinheim AN - OPUS4-59478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bernstein, Michael A1 - Diehl, Bernd W. K. A1 - Holzgrabe, Ulrike A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Monakhova, Yulia A1 - Schönberger, Torsten T1 - qNMR - The handbook N2 - Quantitative NMR (qNMR) has been around for a long time, but also has great potential to solve future problems in any quantitative analysis. As a primary method, it differs fundamentally from chromatographic methods: it is better described as a quantum mechanical balance. Succesful implementation of qNMR requires certain attention to detail. "qNMR - the handbook" is intended to be a guide for analysts to help understand the fundamental principles of NMR and the significant points relating to its implementation for quantitation. Regulatory considerations of qNMR adoption are explained. NMR fundamentals are explained to provide understanding. Together with many useful examples, the book is a compelling addition to the laboratory's reference library, providing all the tools that any practitioner should know to successfully implement qNMR. The authors are qNMR pioneers and come from a variety of backgrounds including business, government and academia. KW - Quantitative NMR spectroscopy KW - NMR spectroscopy KW - Handbook KW - qNMR PY - 2023 SN - 978-3-7568-7891-8 SN - 978-3-7583-8050-1 SP - 1 EP - 302 PB - BoD – Books on Demand CY - Norderstedt AN - OPUS4-59839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zientek, Nicolai A1 - Neugebauer, Michael A1 - Dalitz, F. A1 - Guthausen, G. A1 - Maiwald, Michael T1 - On-line NMR Spektroskopie - RF-Dämpfung von Polymerschläuchen für NMR-Durchflussmesszellen T2 - 6. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 2012-02-26 KW - Medium-Resolution-NMR-Spektroskopie KW - RF-Dämpfung KW - NMR-Durchflussmesszelle PY - 2012 SN - 978-3-9814634-5-3 SP - 41 AN - OPUS4-28265 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Neugebauer, Michael A1 - Maiwald, Michael ED - Wilson, K. ED - Lee, A.F. T1 - Application of NMR in online monitoring of catalyst performance N2 - This chapter contains sections titled: Online Monitoring with NMR Spectroscopy Quantitative NMR Spectroscopy in Technical Samples Flow and High‐Pressure NMR Spectroscopy for Reaction Monitoring Selected Applications of NMR in Online Monitoring of Catalyst Performance Conclusions References PY - 2014 SN - 978-3-527-33213-7 IS - Chapter 13 SP - 413 EP - 436 PB - Wiley-VCH Verlag GmbH & Co. KGaA AN - OPUS4-29612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Neugebauer, Michael A1 - Zientek, Nicolai A1 - Maiwald, Michael ED - Udomkichdecha, W. ED - Böllinghaus, T. ED - Manonukul, A. ED - Lexow, J. T1 - Quantitative online NMR spectroscopy of technical mixtures: on the fly quantification of fluids N2 - In this paper quantitative NMR spectroscopy is demonstrated as a tool for process analytical technology (PAT) in order to obtain real time information from dynamic processes. Different methods for quantification are presented and as a result the limit of detection for NMR measurement could be determined to 3.3 mg kg-1 (ethanol in water). As model processes esterification reactions and dissolution of pharmaceutical formulations are presented and important process parameters are extracted. Furthermore it is demonstrated that not only 1H-NMR spectroscopy can be used for process monitoring but also 13C-NMR for technical mixtures. KW - NMR KW - Quantification KW - Online KW - Process analytical technology PY - 2014 UR - http://link.springer.com/chapter/10.1007/978-3-319-11340-1_15 SN - 978-3-319-11339-5 SN - 978-3-319-11340-1 SP - 151 EP - 160 PB - Springer AN - OPUS4-32584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Die Technologie-Roadmap „Prozess-Sensoren 4.0“ – Chancen für neue Automatisierungskonzepte und neue Geschäftsmodelle N2 - Derzeit finden gravierende Veränderungen im Umfeld der Informations- und Kommunikationstechnik statt, die eine große Chance für die optimierte Prozessführung und Wertschöpfung mit darauf abgestimmten vernetzt kommunizierenden Sensoren bieten. Diese Art „smarte“ Sensoren stellen Dienste innerhalb eines Netzwerks bereit und nutzen Informationen daraus. Dieses ist die Voraussetzung für die Realisierung von Cyber Physical Systems (CPS) innerhalb zukünftiger Automatisierungskonzepte für die Prozessindustrie, wie sie auch durch das Zukunftsprojekt „Industrie 4.0“ adressiert werden. Smarte Prozess-Sensoren ermöglichen neue Geschäftsmodelle für Anwender, Gerätehersteller, Dienstleister. T2 - SICK Prozessindustrie-Tage 2016 CY - Gelsenkirchen, Germany DA - 22.09.2016 KW - Roadmap KW - Prozess-Sensoren 4.0 KW - Prozessanalytik KW - Smart Sensors KW - Automatisierung KW - Prozessindustrie PY - 2016 AN - OPUS4-37390 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Esche, E. A1 - Kraemer, B. A1 - Müller, D. A1 - Meyer, Klas A1 - Zientek, Nicolai A1 - Maiwald, Michael A1 - Wozny, G. T1 - Improved desorption control via Raman spectroscopy N2 - In this contribution a Raman spectrometer based control structure for the heating of a desorption column is proposed. For this purpose calibration experiments for the absorption of carbon dioxide using monoethanolamine solutions are carried out and calibration models are developed to measure both carbon dioxide liquid loads and monoethanolamine mass fractions. The calibration experiments are supported by online NMR spectroscopy to accurately measure the appearance of all species in the electrolyte system. Both models are tested during the plant operation of a mini-plant for the oxidative coupling of methane and the proof of concept for the control structure is given. The Raman spectroscopy implemented in the ATEX conform mini-plant shows a reliable and robust performance being even indifferent to impurities hindering the GC analysis. T2 - 20th International Conference of Process Engineering and Chemical Plant Design CY - Berlin, Germany DA - 15.10.2014 KW - Absorption KW - Carbon capture KW - Raman spectroscopy KW - desorption control KW - Prozessanalytik KW - Process analytical technology PY - 2014 UR - https://www.verfahrenstechnik.tu-berlin.de/fileadmin/fg158/Dokumente/Manuskripte/2014/20th-ICPEPD-Proceedings.pdf SN - 978-3-00-047364-7 SP - 223 EP - 233 PB - Technische Universität Berlin CY - Berlin AN - OPUS4-37399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Current activities to implement the technology roadmap „Process Sensors 4.0“ N2 - As presented at the NAMUR general meeting 2015, the technology roadmap "Process Sensors 4.0" identifies the necessary requirements as well as the communication abilities of such process sensors. We report on the progress of discussions in trialogue between users, software and device manufacturers as well as the research. An important key is the definition of an appropriate and uniform topology for such smart sensors, which will be driven forward in a new NAMUR AK 3.7 "smart sensors" in mutual exchange with device and software manufacturers and research institutions. T2 - NAMUR General Meeting 2016 CY - Bad Neuenahr, Germany DA - 10.11.2016 KW - Prozess-Sensoren KW - Prozess-Sensoren 4.0 KW - Prozess-Spektroskopie KW - Process analytical technology PY - 2016 AN - OPUS4-38228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Die Technologie-Roadmap „Prozess-Sensoren 4.0“ – Chancen für neue Automatisierungskonzepte und neue Geschäftsmodelle N2 - Die auf der NAMUR HS 2015 vorgestellte Technologie-Roadmap „Prozess-Sensoren 4.0“ zeigt die nötigen Anforderungen an Prozess-Sensoren sowie an deren Kommunikations-fähigkeiten auf. Eine Topologie für smarte Sensoren, das Zusammenwirken mit daten- und modellbasierte Steuerungen bis hin zur Softsensorik sowie weitere Anforderungen an Sensoren sind heute noch nicht angemessen beschrieben. Wir müssen jetzt schnell die Weichen für eine smarte und sichere Kommunikationsarchitektur stellen, um zu einer störungsfreien Kommunikation aller Sensoren auf Basis eines einheitlichen Protokolls zu kommen, welches alle Sensoren ausgeben und verstehen. KW - Prozess-Sensoren KW - Prozess-Sensoren 4.0 KW - Industrie 4.0 KW - OPC UA KW - Prozessanalytik KW - Prozessindustrie KW - Automatisierung PY - 2016 UR - https://www.di-verlag.de/de/atp-plus-Smart-Sensors SN - 2510-3911 VL - 01 IS - 1 SP - 12 EP - 21 PB - DIV Deutscher Industrieverlag GmbH CY - München AN - OPUS4-38229 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - "Es ist Arznei, nicht Gift, was ich dir reiche." N2 - Im Rahmen der Herstellung und Überwachung von Arzneimitteln käme wohl niemand – außer dem alten Paracelsus – auf die Idee, diese Aussage in irgendeiner Form anzuzweifeln. Zeit, der Pharmazeutischen Industrie endlich einmal ein Kompliment zu machen. Danke zu sagen, für die technisch, wissenschaftliche Kultur, die fast für jede Krankheit etwas parat hat und uns, unserer Familie, unseren Freunden ein unbeschwertes und langes Leben ermöglicht. Leute, verkauft Euch doch nicht immer so schlecht! KW - Editorial KW - Nathan der Weise KW - Lessing KW - Quality by design KW - Real time release KW - PAT/QbD KW - Prozessanalytik PY - 2012 SN - 2191-8341 VL - 2 IS - 3 SP - Editorial, 1 EP - 1 PB - ECV, Editio-Cantor-Verl. für Medizin und Naturwiss. CY - Aulendorf, Germany AN - OPUS4-37401 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Schmid, Thomas A1 - Rühlmann, Madlen A1 - Büchele, Dominique A1 - Ostermann, Markus T1 - Smart sensors and smart reference materials – an approach to the industrial internet of things N2 - The BAM targets within Bonares I4S are adaption of two online sensors being optimised for mobile applications: A LIBS spectrometer (Laser Induced Breakdown Spectroscopy) as well an a XRF spectrometer (X-Ray Fluorescence Spectroscopy). Beyond , the certification of soil reference materials is scope of I4S at BAM. Therefore, a managable relational database structure is needed, based on a modular Architecture, which is dedicated to spectroscopy. The requirements to such a database are discussed. T2 - International Expert Workshop on Data Standards CY - Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Berlin, Germany DA - 12.10.2016 KW - Bonares KW - Process Analytical Technology KW - Database KW - Laboratory Information Management System KW - Intelligence for Soil PY - 2016 AN - OPUS4-37907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael ED - Maiwald, Michael T1 - Trends in der Prozessanalytik N2 - Aktuell wird von der Prozessindustrie die Weiterentwicklung einiger Messaufgaben und Technologien als sehr bedeutend eingeschätzt. Dazu zählen Infrarot-Kaskadenlaser, die Online-Analyse von Partikeln und Emulsionen, neuartige NIR/MIR-Spektroskopiemodule und deren Miniaturisierung sowie die Weiterentwicklung und Kostenvergünstigung der Raman-Spektroskopie. Heute wie morgen müssen Prozess-Sensoren zuerst die Aufgabe des robusten Messens und der Generierung von Prozessinformationen erfüllen. KW - Prozessanalytik KW - Sensoren KW - Trends KW - Process Analytical Technology PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/cite.201690036/full DO - https://doi.org/10.1002/cite.201690036 SN - 0009-286X VL - 88 IS - 6 SP - 683 EP - 683 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-38090 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batzdorf, Lisa A1 - Zientek, Nicolai A1 - Rump, Doreen A1 - Fischer, Franziska A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Make and break - Facile synthesis of cocrystals and comprehensive dissolution studies N2 - Mechanochemistry is increasingly used as a ‘green alternative’ for synthesizing various materials including pharmaceutical cocrystals. Herein, we present the mechanochemical synthesis of three new cocrystals containing the API carbamazepine (cocrystals CBZ:Indometacin 1:1, CBZ:Benzamide 1:1, and CBZ:Nifedipine 1:1). The mechanochemical reaction was investigated in situ documenting a fast and complete reaction within one minute. Online NMR spectroscopy proved the direct influence of the dissolution behaviour of the coformers to the dissolution behaviour of the API carbamazepine. The dissolution behaviour of the organic cocrystals is compared to the behaviour of the pure drug indicating a general applicability of this approach for detailed cocrystal dissolution studies. KW - Cocrystals KW - Carbamazepine KW - Mechanochemistry KW - Powder diffraction KW - Online NMR spectroscopy PY - 2017 DO - https://doi.org/10.1016/j.molstruc.2016.11.063 SN - 0022-2860 SN - 1872-8014 VL - 1133 SP - 18 EP - 23 AN - OPUS4-38664 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Meyer, Klas A1 - Maiwald, Michael T1 - NMR-Spektroskopie im Feld - Eine neue Online-Methode für die Prozesskontrolle N2 - Flexible, modulare Produktionsanlagen auf der Basis von verfahrenstechnischen Teilmodulen stellen einen vielversprechenden Ansatz für die kontinuierliche Produktion von Fein- und Spezialchemikalien dar. Der Schwerpunkt des Horizont-2020-Projekts der Europäischen Kommission CONSENS (Integrated Control and Sensing) liegt in der Implementierung von innovativen Sensorkonzepten zur Prozessüberwachung und -regelung innerhalb von containerbasierten modularen Produktionsan lagen. In diesem Artikel wird die Feldintegration eines Online-NMR-Sensors als smartes Modul für die Prozesskontrolle beschrieben. Dieses Modul basiert auf einem kommerziell erhältlichen Niederfeld-NMRSpektrometer, das zurzeit für die Anwendung im Laborbereich erhältlich ist. Für die Feldintegration wurde ein ATEX-zertifiziertes, explosionsgeschütztes Gehäuse entwickelt sowie Automationsschemen für den unbeaufsichtigten Betrieb und für die spektrale Datenauswertung erstellt. Nachdem die Machbarkeit und Leistungsfähigkeit des Sensorkonzeptes in Laborexperimente an einer aromatischen Substitutionsreaktion bereits erfolgreich demonstriert wurde, ist die Inbetriebnahme des NMR-Sensormoduls in industrieller Umgebung für 2017 geplant. KW - Prozessanalytik KW - Reaction monitoring KW - Industrie 4.0 KW - Online-NMR-Spektroskopie KW - CONSENS KW - Prozess-Sensoren PY - 2016 SN - 2190-4111 VL - 58 IS - 12 SP - 21 EP - 25 PB - DIV Deutscher Industrieverlag GmbH CY - München AN - OPUS4-38675 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Industrie 4.0 aus Sicht der NAMUR - Die Technologie-Roadmap "Prozess-Sensoren 4.0" und danach ... N2 - Es wurde die Anforderungen an die Kommunikatoion von Analysengeräten für eine zukünftige Topologie nach Industrie 4.0 gemeinsam mit dem ZVEI-Arbeitskreis "Kommunikationstechnik für Analysatoren" (KfA) diskutiert. Ziel des Arbeitskreises ist es, kommunikationstechnische Trends für Prozess-Analysengeräte zu beobachten und zu bewerten. Im Bedarfsfall hat dieser Arbeitskreis die Aufgabe, Analysatoren für neue Kommunikationstechniken tauglich zu machen und die dafür notwendige Anschlusstechnik (inkl. Hardware-Interface und Software) zu entwickeln. Die Arbeiten werden in der Regel im Rahmen eines Firmenkonsortiums in gemeinschaftlichen Entwicklungsprojekten durchgeführt. Eine enge Zusammenarbeit mit verschiedenen Bus-Nutzerorganisationen mit der VDI/VDE-Gesellschaft Mess- und Automati-sierungstechnik (GMA)und mit der Interessengemeinschaft Prozessleittechnik der chemischen und pharmazeutischen Industrie (NAMUR) ist hierfür Grundvoraussetzung. T2 - Kolloquium des ZVEI-Arbeitskreises "Kommunikationstechnik für Analysatoren" CY - Reute, Germany DA - 17.11.2016 KW - Industrie 4.0 KW - ZVEI KW - Kommunikation für Analysengeräte KW - Kommunikation KW - Prozessanalytik KW - Prozess-Sensoren PY - 2016 AN - OPUS4-38358 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zientek, Nicolai A1 - Laurain, Clement A1 - Meyer, Klas A1 - Paul, Andrea A1 - Engel, D. A1 - Guthausen, G. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Automated data evaluation and modeling of simultaneous 19F-1H medium resolution NMR spectra for online reaction monitoring N2 - Medium resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and process monitoring. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra were treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprised direct integration, automated line fitting, indirect hard modeling, and partial least squares regression. T2 - 10. Kolloquium Arbeitskreis Prozessanalytik CY - Gerlingen, Germany DA - 25.11.2014 KW - Online NMR spectroscopy KW - Data evaluation KW - Reaction monitoring KW - Indirect hard modeling PY - 2014 UR - http://arbeitskreis-prozessanalytik.de/images/stories/Veranstaltungen/Kolloquien/10_kolloquium_2014/tagungsband_10_kolloquium_ak_prozessanalytik_2014_hq-druck_f.pdf SP - P04, 24 EP - 25 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-38360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Die neue Technologie-Roadmap „Prozess-Sensoren 4.0“ N2 - Derzeit finden gravierende Veränderungen im Umfeld der Informations- und Kommunikationstechnik statt, die eine große Chance für die optimierte Prozessführung und Wertschöpfung mit darauf abgestimmten vernetzt kommunizierenden Sensoren bieten. Diese Art „smarter“ Sensoren stellen Dienste innerhalb eines Netzwerks bereit und nutzen Informationen daraus. Dadurch ergibt sich aktuell die Notwendigkeit, die Anforderungen an Prozess-Sensoren sowie an deren Kommunikationsfähigkeiten detaillierter zu beschreiben – vom einfachen Temperatursensor bis über heute in Entwicklung befindlichen Mess-Systemen hinaus – da diese Technologieentwicklungen rasant voranschreiten. Vernetzte Sensoren sind die Voraussetzung für die Realisierung von Cyber-physischen Produktionssystemen (CPPS) und zukünftiger Automatisierungskonzepte für die Prozessindustrie, wie sie auch durch das Zukunftsprojekt „Industrie 4.0“ adressiert werden. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - Roadmap KW - Prozess-Sensoren 4.0 KW - Smart Sensors KW - Smarte Sensoren KW - Prozessanalytik KW - Prozessindustrie PY - 2015 SP - 26 EP - 27 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38842 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Maiwald, Michael A1 - Guthausen, G. T1 - Abschlussbericht „Prozesskontrolle mittels Niederfeld-NMR-Spektroskopie“ N2 - Die Online-medium-resolution-NMR-Spektroskopie wurde als neue Technik zur Überwachung verfahrenstechnischer Prozesse weiterentwickelt. Entlang der Prozesskette wurden an den verschiedenen Elementen der Online-Spektroskopie gearbeitet. Ein temperierbarer und druckfester Bypass erlaubt, die reagierende Mischung bei Reaktionsbedingungen über eine Pumpe in die NMR-Messzelle zu fördern, für die verschiedene Versionen von temperatur-isolierten NMR-Durchflusszellen berechnet, realisiert und mittels MRI hinsichtlich ihrer strömungsdynamischen und NMR-Eigenschaften charakterisiert wurden. Austauschbare Polymerleitungen für robuste, industrielle Anwendungen kamen ebenso zum Einsatz wie maßgeschneiderte Flusszellen zur Reduktion der Verweilzeitverteilung und des Stoffdurchsatzes. Bewertungsverfahren für MR-NMR-Spektrometer und Durchflusszellen auf Basis leicht verfügbarer Flüssigkeiten (wie z. B. Aceton, Ethanol, Wasser) wurden abgeleitet, Mindestspezifikationen für die Anwendbarkeit der MR-NMR im Prozessmonitoring wurden erarbeitet. Auf der Basis des Bypasssystems konnten einige verschiedene chemische Reaktionen im Bereich einiger 10 s zeitaufgelöst gemessen und ihre Kinetik auch im Fall von Nichtgleichgewichtsmagnetisierung und schneller Strömung analysiert werden. Voraussetzung ist eine stabile und automatisierte Datenbearbeitung, die sich nahtlos in den Workflow von der Datenakquisition bis zur Datenanalyse einbindet. Daher war ein weiteres Augenmerk auf die Datenvorbehandlung gelegt. Bekannte Algorithmen wie die automatisierte Phasenkorrektur entlang der „Minimum Entropy“ Methode und der Maximierung des Realteilspektrums wurden zusammen mit neuen Methoden wie dem Softewarelock implementiert und angewandt. Zur Bestimmung der Konzentrationen wurden verschiedene Verfahren wie die direkte Integration, die Spektrenmodellierung mit und ohne Vorkenntnisse sowie statistische Methoden der Chemometrie angewandt und verglichen. Ebenso ließen sich erstmalig quasiparallel akquirierte 1H- und 19F-MR-NMR-Spektren für die Prozesskontrolle mit gutem Ergebnis analysieren. Die erarbeiteten Konzepte und Verfahren sind unabhängig von der Hard- und -Software des MR-NMR Geräts und damit allgemein einsetzbar. Während des Projektverlaufs kamen Benchtop-Laborgeräte von einer wachsenden Zahl an Herstellern auf den Markt, die immer besser den Anforderungen der Spektroskopie gerecht werden. Online-MR-NMR-Spektroskopie erweitert die Prozessanalytik um eine bislang nur im Labor bekannte chemische Sensitivität gegenwärtig mit der Fähigkeit zur Unterscheidung von beispielsweise Aliphaten, Olefinen oder Aromaten (z. B. Hydrierung) oder Strukturänderungen (z. B. Isomerisierung), bei denen klassische Techniken an ihre Grenzen stoßen. Sie stellt nun eine Alternative für die Prozessanalyse dar, insbesondere wenn schnelle, zerstörungsfreie und integral arbeitende Methoden erforderlich sind. KW - Prozess-Sensoren KW - DFG KW - NMR-Spektroskopie PY - 2015 SP - 1 EP - 15 AN - OPUS4-38852 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea A1 - Heilmann, M. T. A1 - Schmid, Thomas A1 - Maiwald, Michael T1 - Multivariate classification of Raman spectra from synthetic polymers – an approach for the improved detection of microplastics N2 - The increasing pollution of terrestrial and aquatic ecosystems with plastic debris, which leads to the accumulation of microscopic plastic particles of still unknown fate, is an upcoming problem of our time. In order to monitor the degree of contamination and to understand the underlying processes of degradation and internalization of plastic debris, analytical methods are urgently needed, which help to identify and quantify microplastics. Currently, expensive collected and purified materials enriched on filters are investigated by (micro) infrared spectroscopy (FTIR). Few studies using micro-Raman spectroscopy have been published as well. In contrast to FTIR, Raman spectroscopy can handle wet samples, but it suffers from interference of fluorescent materials. Both micro-FTIR- and micro-Raman, always include time consuming scanning and mapping procedures followed by the manual inspection and measurement of selected particles. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - Prozessanalytik KW - Microplastics KW - Mikroplastik KW - Raman-Spektroskopie KW - Polymers KW - Multivariate classification PY - 2015 SP - 80 EP - 81 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krämer, D. A1 - Violet, N. A1 - Paul, Andrea A1 - Maiwald, Michael A1 - King, R. T1 - Robustification of partial least squares predictions based on near infrared spectroscopy trough nonlinear state estimation N2 - The Cultivation of “Saccharomyces cerevisiae” for enzyme production was monitored using Near-infrared spectroscopy. An inline NIR optrode was therefore immersed in a 15 L vessel. The calibration was done using a Partial Least Squares (PLS) model with reference measurements of glucose, ammonium, phosphate, ethanol, and optical density. A nonlinear biological process model based on an extended Kalman Filter (EKF) was used to describe the fermentation behavior. It was found that EKF corrects inaccurate PLS predictions. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - PLS-R KW - Near infrared spectroscopy KW - Prozess-Spektroskopie KW - Process analytical technology KW - Fermentation PY - 2015 SP - 77 EP - 77 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - How Online NMR Spectroscopy Accelerates Chemical Process Development and Manufacturing – From Automated Spectral Analysis to Integrated NMR Micro Reactors N2 - Accelerating chemical process development and manufacturing along with quick adaption to changing customer needs means consequent transformation of former batch to continuous (modular) manufacturing processes. These are justified by an improved process control through smaller volumes, better heat transfer, and faster dynamics of the examined reaction systems. As an example, for such modular process units we present the design and validation of an integrated nuclear magnetic resonance (NMR) micro mixer tailor‐made for a desired chemical reaction based on computational modelling. The micro mixer represents an integrated modular production unit as an example for the most important class of continuous reactors. The quantitative online NMR sensor represents a smart process analytical field device providing rapid and non‐invasive chemical composition information without need for calibration. We describe the custom design through computational fluid dynamics (CFD) for the demands of the NMR sensor as well as for the given reaction conditions. The system was validated with an esterification reaction as an example for a chemical reaction process. Systems utilizing such an online NMR analyser benefits through short development and set‐up times based on “modular” spectral models. Such models can simply be built upon pure component NMR spectra within minutes to a few hours (i.e., assignment of the NMR signals to the components) instead of tedious DoE calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). The approach was validated for typical industrial reactions, such as hydrogenations or lithiations. T2 - Wissenschaftliches Kolloquium des Leibniz-Institut für Katalyse e. V. an der Universität Rostock CY - Rostock, Germany DA - 09.10.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Data Analysis KW - Digitization KW - Catalysis PY - 2019 AN - OPUS4-49238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bremser, Wolfram A1 - Maiwald, Michael A1 - Kipphardt, Heinrich T1 - Anwendung von Normen in der Gasanalytik - Teil 4 - Messunsicherheit und Rückführbarkeit von Messergebnissen N2 - Zusammen mit der Genauigkeit von Messungen ist die ihnen zugeordnete Messunsicherheit Ausdruck und Maß von Vergleichbarkeit und Richtigkeit. Die Messunsicherheit spielt ebenso die Schlüsselrolle im Aufbau einer Rückführbarkeitskette, wie in diesem Beitrag beschrieben. Es ist der vierte und letzte Teil einer Artikelserie (siehe Infokasten), die Einblicke gibt in die Arbeit des DIN-Normenausschusses „Gasanalyse und Gasbeschaffenheit“ (DIN NA 062-05-73 AA) sowie der international tätigen Technical Committees 158 und 193 der ISO. KW - Normen KW - Messunsicherheit KW - Rückführbarkeit PY - 2015 SN - 1436-2597 SN - 1439-0663 IS - 12 SP - 29 EP - 31 PB - GIT-Verl., Wiley-VCH CY - Weinheim AN - OPUS4-35258 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael A1 - Kipphardt, Heinrich A1 - Bremser, Wolfram T1 - Vom Abgas zum Erdgas - Wie genau sind Sondergase? - Normungsarbeit rund um aktuelle High-Tech Verfahren und Prozesse - Teil 1 N2 - In vielen industriellen High-Tech Verfahren und Prozessen, Forschung und Wissenschaft, Medizin und Umwelttechnik werden Sondergase eingesetzt. Als Gattungsbegriff umfasst diese Bezeichnung ein ansehnliches Spektrum höchster Qualitäten an Gasen. Dazu gehören u. a. Reinstgase mit besonders hohen Anforderungen an ihre Reinheit, Gasgemische genau definierter Zusammensetzung und Isotopengemische. Wie genau kann man Gaszusammensetzungen heute messen? Wie schafft man es, dass alle dasselbe messen? Welche Techniken kommen dabei zum Einsatz? KW - Normung KW - DIN KW - Gas-Normale KW - Referenzmaterialien KW - Erdgas KW - Abgas PY - 2015 SN - 1436-2597 SN - 1439-0663 VL - 5 SP - 6 EP - 8 PB - GIT-Verl., Wiley-VCH CY - Weinheim AN - OPUS4-34945 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fricke, F. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, Stefan A1 - Hierzegger, R. A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy Using a Novel Data Augmentation Method N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are valuable analytical and quality control methods for most industrial chemical processes as they provide information on the concentrations of individual compounds and by-products. These processes are traditionally carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been realized to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra, to train an ANN with better prediction performance and speed than state-of-the-art analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy KW - Modular Production PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539412 UR - https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9638378 DO - https://doi.org/10.1109/TETC.2021.3131371 SN - 2168-6750 VL - 10 IS - 1 SP - 87 EP - 98 PB - IEEE AN - OPUS4-53941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Compact NMR spectroscopy: A versatile tool for automated continuous-flow production of chemicals and pharmaceuticals N2 - Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. T2 - Process Development Seminar Bayer AG Dormagen CY - Dormagen, Germany DA - 14.01.2019 KW - Process analytical technology KW - Low-field NMR spectroscopy KW - Online NMR spectroscopy KW - CONSENS PY - 2019 AN - OPUS4-47197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Wander, L. A1 - Kern, S. T1 - Integrierte und vernetzte Systeme und Prozesse – Eine Perspektive für die smarte Laborinfrastruktur N2 - Chemie- und Pharmaunternehmen müssen neue Wege gehen, um in einem sich wandelnden Umfeld erfolgreich zu überleben, und gleichzeitig flexiblere Wege der Produkt- und Prozessentwicklung finden, um ihre Produkte schneller auf den Markt zu bringen - vor allem hochwertige High-End-Produkte wie Feinchemikalien oder Arzneimittel. Dazu gehört auch das Potenzial der digitalen Technologien, um ein umfassenderes Wissensmanagement zu ermöglichen. Eine wichtige Wissensquelle sind analytische Labors, die Unternehmensweit aktiv sind – von F&E bis zur Produktion. Die ganzheitliche Einbindung von analytischen Labors und ein unternehmensweites Daten- und Wissensmanagement sind wichtige Bausteine zur Integration und Vernetzung aller Systeme und Prozesse. Das Potenzial von Daten aus der Produktion mit ihren Kontextinformationen wird heute oft noch nicht konsequent für ein umfassendes Verständnis der Produktion genutzt. Dieser Beitrag skizziert anhand von Beispielen einen möglichen ganzheitlicheren Ansatz zur Digitalisierung und zum Einsatz maschineller Verfahren in der Produktion von Spezialchemikalien und Pharmazeutika durch die Einführung integrierter und vernetzter Systeme und Prozesse. T2 - 6. Analytik-Tag des Institut für Energie- und Umwelttechnik e.V. (IUTA) CY - Duisburg, Germany DA - 10.11.2022 KW - Prozessindustrie KW - Online-NMR-Spektroskopie KW - Prozessanalytik KW - Digitalisierung KW - Datenauswertung KW - IUTA PY - 2022 AN - OPUS4-56226 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Wander, Lukas A1 - Paul, Andrea A1 - Bremser, Wolfram A1 - Maiwald, Michael T1 - Mathematical and statistical tools for online NMR spectroscopy in chemical processes N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied, which require excessive calibration effort. NMR spectroscopy has a high potential for direct loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and harsh environ¬ments for advanced process monitoring and control, as demonstrated within the European Union’s Horizon 2020 project CONSENS. We present a range of approaches for the automated spectra analysis moving from conventional multivariate statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants or derivatives and robust automation schemes. T2 - Advanced Mathematical and Computational Tools in Metrology and Testing conference CY - Glasgow, United Kingdom DA - 29.08.2017 KW - Online NMR Spectroscopy KW - Process Control KW - Partial Least Squares Regression KW - Indirect Hard Modelling KW - Quantum Mechanics KW - First Principles PY - 2018 SN - 978-9-813-27429-7 VL - 89 SP - 229 EP - 234 PB - World Scientific CY - New Jersey AN - OPUS4-51391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Prozessanalytik als Instrument des Informationsmanagements in der Chemischen und Pharmazeutischen Industrie N2 - Die Wettbewerbsfähigkeit der Chemischen und Pharmazeutischen Industrie basiert auf der Sicherung der geforderten Produktqualität bei einer optimalen Nutzung von Anlagen, Rohstoffen und Energie [1]. Eine gute Prozessführung unter Einsatz zuverlässiger Prozessanalytik sichert hier den globalen Wettbewerbsvorteil gegenüber Niedriglohnländern, die mit weniger effizienten Verfahren produzieren. Prozessanalytik trägt zur Erhöhung der Prozess- und Anlagensicherheit bei. In Kombination mit geeigneten Informationsmanagementsystemen verbessert dieser Ansatz ständig das Wissen über den Prozess und führt damit zu einer präventiven Sicherstellung der geforderten Qualität. KW - Datenbanken KW - Informationsmanagement KW - Prozessanalytik KW - Prozesssicherheit KW - Sensoren KW - Statistik PY - 2010 DO - https://doi.org/10.1002/cite.200900137 SN - 0009-286X SN - 1522-2640 VL - 82 IS - 4 SP - 383 EP - 390 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-23054 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Technologie-Roadmap, "Prozess-Sensoren 2015+", Vision oder Mission? T2 - MSR-Anwendertreffen Leipziger Messe CY - Leipzig, Germany DA - 2011-01-26 PY - 2011 AN - OPUS4-23091 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Petzoldt, Martin A1 - Dalitz, F. A1 - Vargas, M. A1 - Steiwand, A. A1 - Guthausen, G. T1 - Prozesskontrolle mittels MR-NMR: Erste Ergebnisse T2 - Doktorandentagung Attendorn CY - Attendorn, Germany DA - 2011-02-27 PY - 2011 AN - OPUS4-23293 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Analytische Methoden für das Polymorphiescreening in der pharmazeutischen Entwicklung T2 - Abschlussvortrag, Doktorandenseminar Attendorn CY - Attendorn, Germany DA - 2011-02-27 PY - 2011 AN - OPUS4-23292 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Process analytical applications of High Resolutiom On-Line NMR Spectroscopy T2 - Ruhr Universität Bochum, GDCh-Kolloquium CY - Bochum, Germany DA - 2010-10-18 PY - 2010 AN - OPUS4-22924 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Maiwald, Michael T1 - Hochauflösende Online-NMR-Spektroskopie für das Reaktions- und Prozeßmonitoring - Beispiele zur Anwendung in der Verfahrenstechnik N2 - Die moderne Reaktions- und Trenntechnik in der chemischen Industrie ist eine Hochtechnologie. Die dort eingesetzten Verfahren zur Reaktionsführung und Auftrennung der Produkte sind weitestgehend optimiert. Zu diesem Stand hat die instrumentelle Analytik – speziell die Prozeßanalytik – wesentlich beigetragen. Das Reaktions- und Prozeßmonitoring ist eine wichtige Hilfe zum Verständnis der komplexen Zusammenhänge. In der vorliegenden Arbeit wird der Einsatz der NMR-Spektroskopie in verfahrenstechnischen Anwendungen wie dem Reaktions- und Prozeß-Monitoring diskutiert und alle dazu notwendigen Grundlagen erläutert. Solche Anwendungen erfordern häufig Techniken, mit denen hochaufgelöste Spektren zerstörungsfrei aufgenommen werden können, oft bei erhöhtem Druck und erhöhter Temperatur. Neben der quantitativen Bestimmung der Zusammensetzung komplexer reagierender Mischungen besteht gleichzeitig die Möglichkeit zur Identifikation von Nebenprodukten. Dieses gelingt insbesondere durch die Nutzung der NMR-Spektroskopie als Online-Methode, die in der Literatur bislang nur in wenigen Einzelfällen beschrieben und trotz ihrer enormen Möglichkeiten noch nicht konsequent angewendet wird. Durch die fortschreitende Entwicklung auf dem Gebiet der NMR-Spektroskopie kann eine Online-Anbindung heute durchgehend mit Hilfe kommerziell erhältlicher Komponenten erfolgen – wie die vorliegende Arbeit zeigt. Fallende Kosten in der Beschaffung und dem Betrieb leistungsfähiger NMR-Spektrometer machen die Methode auch im verfahrenstechnischen Umfeld mittlerweile sehr attraktiv. Die Attraktivität der Methode gewinnt neuerdings insbesondere durch die erweiterten Einsatzmöglichkeiten kompakterer NMR-Magneten mit geringen Streufeldern. Obwohl sich in den Ingenieurwissenschaften damit vielfältige Einsatzmöglichkeiten ergeben, wird die NMR-Spektroskopie dort bislang noch leider kaum genutzt. Besondere Herausforderungen stellen sich u. a. dadurch, daß sich weder deuterierten Komponenten einsetzen lassen noch die Probe in einer geeigneten Weise in einer Probenvorbereitung verändert werden kann. Damit kommen hochkonzentrierte Mischungen zur direkten Untersuchung. Dieses hat signifikante Rückwirkungen auf die einzusetzende NMR-Methodik, die im Rahmen der Arbeit umfassend untersucht wurde. In der Regel lassen sich die Probleme bei entsprechender experimenteller Vorgehensweise umgehen. Zur Garantie quantitativer Meßwerte wurden alle eingesetzten Meß- und Auswertungsstrategien ausführlich untersucht und teilweise erweitert. Um quantitativ aussagekräftige Online-NMR-Spektren mit Hilfe der 1H- und 13C-NMRSpektroskopie von technischen Mischungen zu erhalten, wurden folgende Aufgaben gelöst: Entwicklung und Validierung von Vorgehensweisen zur Messung hochkonzentrierter, technischer Mischungen ohne Probenvorbereitung und ohne Zusatz deuterierter Komponenten; Konstruktion geeigneter Apparaturen zur Untersuchung von Reaktionsgleichgewichten und -kinetiken für verschiedene Druck- und Temperaturbereiche, die sich optimal für die Online-NMR-Spektroskopie einsetzen lassen; Ankopplung der NMR-Spektrometers an die unterschiedlichen Apparate mit Hilfe von NMR-Durchflußzellen; Schaffung einer möglichst noninvasiven Untersuchungsmethode hinsichtlich aller Probenparameter (z. B. Druck, Temperatur); Schaffung und Erprobung von Meß- und Auswertungsstrategien im Hinblick auf quantitative Parameter, Erweiterung des zugänglichen Druck- und Temperaturbereiches der Messungen sowie Verkürzung des Zeitfensters für Messungen durch geeignete Peripherie und konstruktiven Veränderungen am NMR-Probenkopf. Als Beispiel werden Messungen an binären und ternären flüssigen Mischungen aus Formaldehyd, Wasser und Methanol diskutiert. In diesen Systemen ist Formaldehyd fast ausschließlich in Poly(oxymethylen)Glykolen und -hemiformalen chemisch gebunden. Die chemischen Reaktionen in formaldehydhaltigen Mischungen bestimmen deren thermodynamisches Verhalten sowie ihre Trennung mit thermischen Verfahren. Die NMR-Spektroskopie ist das zentrale analytische Verfahren, mit dem sich diese Vorgänge aufklären und quantifizieren lassen. Für die hier vorgestellten Untersuchungen zum Prozeßmonitoring kamen u. a. eine Online-NMRKopplung mit einem Dünnschichtverdampfer sowie mit einem Rührreaktor zum Einsatz. In weiteren Anwendungsbeispielen zum Thema Formaldehyd wird aufgezeigt, daß sich die Online-NMR-Spektroskopie auch zum Studium komplexer Reaktionsnetzwerke, zur Messung von Gaslöslichkeiten oder zur Quantifizierung kleinster Produktmengen unter schwierigen, technischen Reaktionsbedingungen eignet. Ferner werden Arbeiten zur Aufklärung und Quantifizierung der chemischen Prozesse bei der Absorption von Kohlendioxid in wässrigen Aminlösungen bei Drücken bis zu 30 bar und reaktionskinetische Untersuchungen von Veresterungen vorgestellt, bei denen auch ein Vergleich mit einer GC-Analytik durchgeführt wurde. Ebenso wird gezeigt, daß sich die Online-NMR-Spektroskopie zur Beobachtung von Reaktionen in Ionischen Flüssigkeiten eignet. Ein Teil der Arbeit beschäftigt sich mit der Untersuchung fluider Mischungen bei hohen Drücken. Beispielhaft werden Arbeiten zu H-Brückengleichgewichten von Methanol in überkritischem Kohlendioxid vorgestellt, die eine wertvolle, experimentelle Datenbasis zur Überprüfung molekulardynamischer Modelle in der molekularen Simulation liefern. Für die meisten Anwendungsbeispiele werden neue Reaktoren und Meßapparaturen vorgestellt, die sich besonders für den Einsatz in der Durchfluß-NMR-Spektroskopie eignen. Schließlich wird kurz auf die Anwendung der NMR-Spektroskopie zur Bestimmung physikalisch chemischer Größen eingegangen, wie z. B. zur Bestimmung von Diffusuionskoeffizienten in technischen Mischungen. Erstmals wird der Einsatz der Methode in der Taylor-Dispersionstechnik beschrieben und experimentell belegt. KW - Kernresonanzspektroskopie KW - Online-NMR-Spektroskopie KW - Prozessverfolgung KW - Reaktionsmonitoring KW - Kohlenstoff-13-NMR-Spektroskopie KW - NMR-Spektroskopie KW - Protonen-NMR-Spektroskopie KW - Prozessanalytik KW - Verfahrensentwicklung PY - 2012 UR - https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3213 SN - 978-3-95404-136-7 SP - 1 EP - 189 PB - Cuvillier CY - Göttingen AN - OPUS4-26310 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael ED - Gerlach, G. ED - Schütze, A. T1 - Anforderungen an Sensoren für die chemische Verfahrenstechnik N2 - Eine stets optimale Nutzung von Anlagen, Rohstoffen und Energie in Verbindung mit einer guten Prozessführung sind die wichtigsten Voraussetzungen für globale Wettbewerbsvorteile der Chemisch Pharmazeutischen Industrie und für die Branchen Energieerzeugung, Petrochemie, Nahrungsmittel, Papier- und Zellstoff oder Wasserversorgung. Überlegene Verfahren erfordern die fortwährende Kontrolle der geforderten Produktqualität, ihre präventive Sicherstellung und eine ständige Verbesserung des Wissens über den Prozess. Sensoren helfen dabei, alle wichtigen Messgrößen an kritischen Stellen transparent zu machen. Sie sind die 'Sinnesorgane der Prozessleittechnik' für automatisierte Verfahren. Allein aufgrund stetig wachsender Anforderungen an Sensoren ergibt sich für viele Messaufgaben die Notwendigkeit einer ständigen Verbesserung der Sensoren. Für völlig neue Aufgaben müssen jedoch neue Messprinzipien gefunden werden, weil heute noch keine Sensor-Technologie existiert oder die wachsenden Anforderungen nicht mehr allein durch Weiterentwicklung bestehender Technologien erfüllt werden können. Ende 2009 wurden Anforderungen und Wege für die konsequente Weiterentwicklung und Verbesserung von Prozess-Sensoren aus Anwendersicht aufgeschrieben. Das Projekt wurde von NAMUR und GMA initiiert und gemeinsam mit Industrieanwendern und Geräteherstellern als Technologie-Roadmap 'Prozess-Sensoren 2015+' veröffentlicht. Was ist aus den Wünschen seither geworden? Wie kann die Umsetzung dieser Entwicklungsziele von den Geräteherstellern wirtschaftlich und marktgängig erfolgen? Wie werden neuartige Forschungsziele mit der angemessenen Forschungsförderung am besten vorangebracht? T2 - 10. Dresdner Sensor-Symposium CY - Dresden, Germany DA - 05.12.2011 PY - 2011 SN - 978-3-942710-53-4 DO - https://doi.org/10.5162/10dss2011/6.1 N1 - Serientitel: Dresdner Beiträge zur Sensorik – Series title: Dresdner Beiträge zur Sensorik VL - 43 SP - 93 EP - 98 PB - TUDpress, Verlag der Wissenschaften GmbH AN - OPUS4-26242 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dalitz, F. A1 - Maiwald, Michael A1 - Guthausen, G. T1 - Considerations on the design of flow cells in by-pass systems for process analytical applications and its influence on the flow profile using NMR and CFD N2 - The design of sample flow cells, commonly used in on-line analytics and especially for medium resolution NMR spectroscopy (MR-NMR) in low magnetic fields, was experimentally and theoretically investigated by 1H NMR and numerical simulations. The flow pattern was characterised to gain information about the residence time distribution and mixing effects. Both 1H NMR imaging and spectroscopy were used to determine the characteristics of flow cells and their significance for on-line measurements such as reaction monitoring or hyphenated separation spectroscopy. The volume flow rates investigated were in the range from 0.1 to 10 ml/min, typically applied in the above mentioned applications. The special characteristics of flow cells for MR-NMR were revealed by various NMR experiments and compared with CFD simulations and to flow cells commonly used in high-field NMR. The influence of the design of the inlet and outlet on the flow pattern was investigated as well as the effect of the length of the cell. For practical use, a numerical estimation of the inflow length was given. In addition, it was shown how experiments on the polarisation build-up revealed insight into the flow characteristics in MR-NMR. KW - Chemical processes KW - Imaging KW - Instrumentation KW - Process control KW - NMR KW - CFD PY - 2012 DO - https://doi.org/10.1016/j.ces.2012.03.042 SN - 0009-2509 VL - 75 SP - 318 EP - 326 PB - Elsevier CY - Amsterdam AN - OPUS4-25792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Prozess-Spektroskopie Einführung in die spektroskopischen methoden der Prozessanalytik T2 - Frühjahrsschule "Industrielle Analytik" Universität Ulm CY - Ulm, Germany DA - 2012-03-19 PY - 2012 AN - OPUS4-26708 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Neuste Entwicklungen und Einsatzgebiete der Online-NMR-Spektroskopie T2 - 2. VDI-Fachkonferenz Prozessanalytische Messtechnik in der Chemieindustrie CY - Frankfurt am Main, Germany DA - 2012-02-29 PY - 2012 AN - OPUS4-25566 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Prozessanalytik 2012 Stand&Tendenzen T2 - Frühjahrsschule "Industrielle Analytik" Universität Ulm CY - Ulm, Germany DA - 2012-03-19 PY - 2012 AN - OPUS4-26709 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael A1 - Schewitz, J. T1 - Prozessanalytik im Umfeld der Pharmazeutischen Entwicklung und Produktion PY - 2012 SN - 2191-8341 VL - 2 IS - 3 SP - 166 EP - 172 PB - ECV, Editio-Cantor-Verl. für Medizin und Naturwiss. CY - Aulendorf AN - OPUS4-26052 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Büchele, Dominique A1 - Gräßer, Patrick A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Ostermann, Markus A1 - Paul, Andrea A1 - Rühlmann, Madlen A1 - Schmid, Thomas A1 - Wander, Lukas T1 - Aktuelle Herausforderungen für die Prozessanalytik – von der Online-NMR-Spektroskopie im Feld bis zum Plasmaspektrometer auf dem Acker N2 - Der Vortrag stellt einige aktuelle Herausforderungen für die Prozessanalytik und mögliche Antworten vor. Gepulste Raman-Spektrometer akkumulieren das Raman-Signal mit Hilfe schneller optischer Schalter im Picosekunden-Bereich, bevor langlebigere Fluoreszenzanregung entsteht. Damit lassen sich stark fluoreszierende Materialien untersuchen, die bislang nicht zugänglich sind. Eine weitere interessante Entwicklung ist etwa die Shifted excitation Raman difference spectroscopy (SERDS) die besonders für biologische Anwendungen interessant ist. Flexible, modulare Produktionsanlagen stellen einen vielversprechenden Ansatz für die kontinuierliche Produktion von Fein- und Spezialchemikalien dar. In einem EU-Projekt wird derzeit die Feldintegration eines Online-NMR-Sensormoduls als smartes Modul für die Prozesskontrolle vorangebracht. Dieses Modul basiert auf einem kommerziell erhältlichen Niederfeld-NMR-Spektrometer, welche zurzeit für die Anwendung im Laborbereich erhältlich ist. Für die Feldintegration wurde ein ATEX-zertifiziertes, explosionsgeschütztes Gehäuse entwickelt sowie Automationsschemen für den unbeaufsichtigten Betrieb und für die spektrale Datenauswertung erstellt. Eine sehr gut anwendbare analytische Messtechnik zur Kontrolle der elementaren Zusammensetzung von verschiedensten Materialien ist die laserinduzierte Plasmaspektroskopie (LIPS, engl. LIBS - Laser-induced Breakdown Spectroscopy). Bei der LIBS wird ein kurz gepulster Laser auf eine Probe fokussiert, um ein Leuchtplasma zu erzeugen. Das dabei erzeugte Atomemissionsspektrum ermöglicht eine qualitative und quantitative Analyse der Zusammensetzung der Probe bezüglich praktisch aller Elemente des Periodensystems. In einem aktuellen Projekt wird diese Methode neben anderen zur Online-Analyse von Ackerböden für die ortsspezifischer Bewirtschaftung (Precision Agriculture) weiterentwickelt und bewertet. T2 - Vortragsreihe Analytik, Merck KGaA CY - Darmstadt, Germany DA - 19.05.2017 KW - Prozessanalytik KW - Reaction Monitoring KW - Online NMR Spektroskopie KW - LIBS KW - RFA KW - Raman-Spektroskopie KW - BONARES KW - CONSENS PY - 2017 AN - OPUS4-40328 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Chancen für neue Automatisierungskonzepte und neue Geschäftsmodelle in der Prozessindustrie auf Basis von „Prozess-Sensoren 4.0“ und Modularisierung N2 - Für die weitere Entwicklung von der Ist‐Situation zu einer Industrie-4.0-Welt in der Prozessindustrie bestehen recht ähnliche Szenarien. Dazu werden derzeit mehrere Szenarien diskutiert. Diese reichen vom erleichterten Abruf sensorbezogener Daten über zusätzliche Kommunikationskanäle zwischen Sensor und mobilen Endgeräten über vollständig bidirektionale Kommunikation bis hin zur Einbindung der Cloud und des Internets in virtualisierte Umgebungen. Um zu einer störungsfreien Kommunikation aller Sensoren untereinander zu kommen, muss mindestens ein einheitliches Protokoll her, das alle Sensoren sprechen und verstehen. Der derzeit greifbarste offengelegte Standard, der moderne Kommunikationsanforderungen erfüllt, ist OPC Unified Architecture (OPC-UA). Viele halten das Sortieren der Kommunikationsstandards für eines der wesentlichen Errungenschaften von Industrie 4.0. Es gibt viele Parallelen zwischen der Laborgerätewelt und der Prozess-Sensor-Welt, die im Rahmen der Digitalisierung immer näher aneinanderrücken. T2 - SPECTARIS e.V., 3. Treffen Projektgruppe Schnittstellen CY - Berlin, Germany DA - 14.06.2017 KW - Prozess-Sensoren KW - Industrie 4.0 KW - SPECTARIS KW - OPC-UA KW - Automation KW - Smarte Sensoren PY - 2017 AN - OPUS4-40598 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Paul, Andrea A1 - Zientek, Nicolai A1 - Batzdorf, Lisa A1 - Emmerling, Franziska T1 - Online-qNMR-Spektroskopie zur Charakterisierung des Lösungsverhaltens von pharmazeutischen Wirkstoffen und Formulierungen N2 - Nur weit weniger als ein Prozent aller pharmazeutischen Wirkstoffe finden den Weg in die Anwendung. Grund dafür sind in fast allen Fällen die äußerst schlechten biopharmazeutischen Eigenschaften der Wirkstoffe, wie ihre Löslichkeit, Stabilität und – bei festen Darreichungsformen – ihre Kristalleigenschaften, auch wenn die Wirkstoffe eine gute Wirksamkeit oder gute toxikologische Eigenschaften aufweisen. Mit dem Trend zu höheren Molmassen bei chemischen Wirkstoffen nimmt ihre Löslichkeit in wässrigen Systemen rapide ab. Verbesserungen der Löslichkeit und des Auflösungsverhalten stellen heute die zentrale Herausforderung bei der Entwicklung neuer Arzneimittel dar und liegen im Fokus der aktuellen pharmazeutischen Forschung und Entwicklung. Für eine Verbesserung der physikalisch chemischen Eigenschaften werden verschiedene Verfahren beforscht: Mikronisierung, gezielte Salzbildung bzw. Salzscreening, Solubilisierung mit Cosolventien oder die Nutzung von Polymeren als mögliche Transportwege. Pharmazeutische Cokristalle bestehen aus einem Wirkstoff und einem sogenannten Cokri-stall-Bildner. Bei letzterem handelt es sich typischerweise um ein organisches Molekül, das ähnliche Struktureigenschaften wie der pharmazeutische Wirkstoff aufweist. Die Synthese und Charakterisierung von pharmazeutischen Cokristallen ist von patentrechtlicher Relevanz und Gegenstand aktueller Forschungen, da die Bildung solcher Cokristalle häufig mit einer Verbesserung der physikochemischen Eigenschaften der enthaltenen Wirkstoffe einhergeht. In den letzten Jahren ist es gelungen, insbesondere das Auflösungsverhalten der pharmazeutischen Wirkstoffe gezielt zu verbessern und dadurch eine optimierte Bioverfügbarkeit zu realisieren. Um einige Einschränkungen der Methoden UV/VIS-Detektion und HPLC zu umgehen, verfolgen wir das Auflösungsverhalten der Cokristalle mittels Online-NMR-Spektroskopie als ein direktes Verfahren: Die Methode erlaubt zum einen die direkte Beobachtung und Quantifizierung individueller Species, die bei der Auflösung beteiligt sind, d. h. Wirkstoff(e), Cokristallbildner und Lösungsmittel lassen sich getrennt voneinander mit einer hohen zeitlichen Auflösung und spektraler Dispersion beobachten. Ferner kommt diese Me-thode ohne Kalibrierung aus, da die NMR-Spektroskopie eine "absolute Vergleichsmethode" ist. Darüber hinaus kann die absolute Konzentration gemessen werden, wenn gegen Standards gearbeitet wird. Der Einsatz dieses Verfahrens zum Studium des Auflösungsverhaltens ist völlig neu. Perspektivisch reizvoll ist die Weiterentwicklung zu einem mikroanalytischen Verfahren, das mit äußerst geringen Substanzmengen auskommt. T2 - Institutskolloquium Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg CY - Würzburg, Germany DA - 27.07.2017 KW - Pharmazeutische Wirkstoffe KW - Pharmazeutische Formulierungen KW - Cokristalle KW - qNMR-Spektroskopie KW - Quantitative NMR-Spektroskopie KW - Auflösungsverhalten PY - 2017 AN - OPUS4-41166 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Online NMR Spectroscopy for Process Monitoring in Intensified Continuous Production Plants N2 - Process analytical techniques are extremely useful tools for chemical production and manufacture and are of particular interest to the pharmaceutical, food and (petro-) chemical industries. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. A major advantage of NMR spectroscopy is that the method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method which is independent of the matrix. This is an important prerequisite for robust data evaluation strategies within a control concept and reduces the need for extensive maintenance of the evaluation model over the time of operation. Additionally, NMR spectroscopy provides orthogonal, but complimentary physical information to conventional, e.g., optical spectroscopy. It increases the accessible information for technical processes, where aromatic-toaliphatic conversions or isomerizations occur and conventional methods fail due to only minor changes in functional groups. As a technically relevant example, the catalytic hydrogenation of 2-butyne-1,4-diol and further pharmaceutical reactions were studied using an online NMR sensor based on a commercially available low-field NMR spectrometer within the framework of the EU project CONSENS (Integrated Control and Sensing). T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Process Monitoring KW - CONSENS KW - Online NMR Spectroscopy KW - Process Analytical Technology KW - Process control KW - Hydration KW - EuroPACT PY - 2017 SP - 103 EP - 103 CY - Frankfurt a. M. AN - OPUS4-40231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koegler, M. A1 - Paul, Andrea A1 - Anane, E. A1 - Birkholz, M. A1 - Bunker, A. A1 - Viitala, T. A1 - Maiwald, Michael A1 - Junne, S. A1 - Neubauer, P. T1 - Comparison of time-gated surface-enhanced Raman spectroscopy (TG-SERS) and classical SERS based monitoring of Escherichia coli cultivation samples N2 - The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here, we compare time-gated Raman (TG-Raman)-, continuous wave NIRprocess Raman (NIR-Raman), and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP, and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids, and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. KW - Time-gated Raman (TG-Raman) KW - Surface-enhanced Raman spectroscopy (SERS) KW - Multivariate data analysis KW - Metabolite quantification KW - Escherichia coli PY - 2018 DO - https://doi.org/10.1002/btpr.2665 SN - 1520-6033 SN - 8756-7938 VL - 34 IS - 6 SP - 1533 EP - 1542 PB - Wiley AN - OPUS4-45831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael A1 - Klaer, R.-H. A1 - Wagner, A. T1 - 100 % Digital in der Prozessindustrie - Tutzing-Symposion Teil 3: Intelligente Nutzung von Daten und Bausteinen der Digitalisierung N2 - Digitalisierung und Industrie 4.0 verändern komplette Geschäftsmodelle, heben neue Effizienzpotenziale und stärken die Wettbewerbsfähigkeit. Auf dem 57. Tutzing-Symposion vom 15.–18.04.2018 wurde mit Vorträgen und Kreativworkshops erkundet, welche speziellen Anforderungen die Prozessindustrie hat, welche digitalen Innovationen bereits umgesetzt wurden und wo noch Handlungsbedarf besteht. Ein Workshop befasste sich mit den Themenfeldern Datenkonzepte, Datenanalyse, Big Data und künstliche Intelligenz. Es geht nicht um die Digitalisierung von heute. Im Angesicht der wachsenden Digitalisierung unserer Prozesse stellt sich die Frage, ob wir den Prozess wirklich gut kennen. Ob alle Verfahrensschritte detailliert hinterlegt wurden. Nur mit einem heuristischen Ansatz kann das vorhandene Wissen nicht digitalisiert werden. Sehr schnell werden die Mechanismen eines Massenmarktes mit denen einer Nische verwechselt. Nicht jeder Mechanismus, den wir von großen Suchmaschinen oder Einkaufsportalen kennen, gibt uns einen Hinweis auf Nutzen und Verfügbarkeit für die Prozess- oder pharmazeutische Industrie. Eine gute Analyse der Anforderungen in der Zukunft mit einem Abgleich der derzeitigen technischen Möglichkeiten ist Voraussetzung für eine Verbesserung der derzeitigen digitalen Umsetzung. Dabei ist es sinnvoll unkonventionelle Methoden einzusetzen. KW - Digitalisierung KW - Prozessindustrie KW - Tutzing-Symposion KW - Datenkonzepte KW - Datenanalyse KW - Big Data KW - Künstlicher Intelligenz PY - 2018 UR - https://www.chemanager-online.com/themen/produktion/100-digital-der-prozessindustrie SN - 1436-2597 VL - 21 IS - 9 SP - 6 EP - 9 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-45861 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - NMR spectroscopy for online monitoring and process control N2 - Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example.Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme. T2 - Global Expert Meeting Analytical Quantification, Syngenta Crop Protection AG CY - Stein, Switzerland DA - 22.05.2018 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Benchtop NMR spectroscopy PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - Already producing or still calibrating? – Online NMR spectroscopy as smart field device N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - Analytical Chemists Meeting, Syngenta Crop Protection Monthey SA CY - Monthey, Switzerland DA - 23.05.2018 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Benchtop NMR spectroscopy KW - Direct loop control PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Steinmüller, D A1 - Gerlach, M T1 - Wandel der Prozessanalytik vom Exot zur Informationsquelle der digitalisierten Automation N2 - Die ehemals wegen komplexer Technik und vergleichsweise hohen Wartungskosten beim Anwender ungeliebte Prozessanalysentechnik (PAT) erfährt sich mittlerweile immer mehr als etablierender Bereich mit einem großen Zuwachs und Dynamik. Die Prozesskontrolle und -steuerung über physikalische Kenngrößen wie Druck und Temperatur lässt eine weitere Optimierung der Anlagen kaum mehr zu. Nur mittels stoffspezifischer Analysen lassen sich Rohstoffschwankungen, Ausbeuten und Energieeinsatz konsequent optimieren. Der systematische Einsatz der Prozessanalysentechnik verändert Prozesse und Produktionsumgebungen und hat damit die Chance, Kernstück dezentral automatisierter Produktionseinheiten zu werden. Ein neuer Arbeitskreis der NAMUR AK 3.7 „Smarte Sensorik, Aktorik und Kommunikation“ wird diesem verstärkt Rechnung tragen. Es werden reale Anwendungsbeispiele aufgezeigt, die eine schnelle Amortisation von PAT im Prozess untermauern. T2 - ACHEMA 2018 - AUTOMATION IM DIALOG CY - Frankfurt a. M., Germany DA - 11.06.2018 KW - Prozessanalytik KW - Automation KW - Industrie 4.0 KW - Prozessanalysentechnik KW - NAMUR KW - ZVEI PY - 2018 AN - OPUS4-45193 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Maiwald, Michael A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin T1 - Produzieren Sie schon oder kalibrieren Sie noch? – Online-NMR-Spektrometer als Smarte Feldgeräte N2 - Der Übergang von der aktuellen Automatisierungslandschaft zur nächsten Generation von Automatisierungskonzepten für die Prozessindustrie hat bereits begonnen. Intelligente Funktionen der Sensoren vereinfachen ihre Anwendung und ermöglichen eine Plug-and-Play-Integration, auch wenn sie auf den ersten Blick komplexer erscheinen mögen. Dies ist die Basis für die Digitalisierung der Prozessindustrie und hilft uns, komplexere Prozesse schneller umzusetzen. Der Vortrag fasst die derzeit diskutierten allgemeinen Anforderungen an „Smarte Feldgeräte“ zusammen und diskutiert dieses am Beispiel eines smarten Online-NMR-Sensors. NMR-Spektroskopie bietet sich durch den Vorteil der direkten Vergleichsmethode (ohne Kalibrierung) für die Prozess-Steuerung an und verringert somit die Rüstzeiten. Zudem basiert der Sensor auf physikalisch motivierten Modellen (Indirect Hard Modeling, IHM), die sich modular kombinieren lassen. Die Methoden wurden anhand eines vorgegebenen pharmazeutischen Reaktionsschrittes im Rahmen des „Horizon 2020“-Projekts CONSENS der Europäischen Union demonstriert und validiert. Zuletzt werden Anforderungen an die Weiterentwicklung der Datenauswertemethoden diskutiert, um letztlich die semantische Information aus den Messdaten herauszulesen oder das in der Industrie 4.0 geforderte „durchgehende Engineering“ für die Automatisierungskomponenten zu ermöglichen. T2 - ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen CY - Aachen, Germany DA - 10.09.2018 KW - Prozessindustrie KW - Prozessanalytik KW - Online-NMR-Spektroskopie KW - Datenkonzepte KW - Datenanalyse KW - CONSENS PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45934 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - Already producing or still calibrating? – Online NMR spectroscopy as smart field device N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. Industry 4.0, IIoT, or Lab 4.0 will enable us to handle more complex processes in shorter time. Intensified production concepts require for adaptive analytical instruments and control technology to realize short set-up times, modular control strategies. They are based on a digitized Laboratory 4.0. T2 - GA-Conference CY - BASF, Ludwigshafen, Germany DA - 16.05.2018 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Industrie 4.0 KW - Indirect Hard Modeling KW - Laboratory 4.0 KW - CONSENS PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Maiwald, Michael T1 - Produzieren Sie schon oder kalibrieren Sie noch? – Online-NMR-Spektrometer als Smarte Feldgeräte N2 - Der Vortrag zeigt allgemeine Anforderungen an "smarte Feldgeräte" und deren Entwicklung in den vergangenen Jahren. Am Beispiel eines smarten Online-NMR-Sensors, der in einem EU-Projekt von der BAM entwickelt wurde, wird die Umsetzung der Anforderung aufgezeigt. Schließlich werden weitere Technologieanforderungen und Lösungsansätze vorgestellt. T2 - ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen CY - Aachen, Germany DA - 10.09.2018 KW - Prozessanalytik KW - Prozessindustrie KW - Online-NMR-Spektroskopie KW - Datenkonzepte KW - Datenanalyse KW - CONSENS PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201855229 DO - https://doi.org/10.1002/cite.201855229 SN - 0009-286X N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. VL - 90 IS - 9 SP - 1236 EP - 1236 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-45901 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Andrea A1 - Broszies, T. A1 - Ostermann, Markus A1 - Vogdt, F.U. A1 - Maiwald, Michael T1 - Unterscheidung von Mineralwollen mit Nahinfrarot-Spektroskopie (NIRS) T1 - Differentiation of mineral wool by near-infrared spectroscopy (NIRS) N2 - Für die Rückführung von aus Rückbauprojekten anfallender künstlicher Mineralwolle in ihren Herstellungsprozess ist es notwendig, Stein- und Glaswolle zu unterscheiden und voneinander getrennt zu halten. Zu diesem Zweck wurde das Potential von NIR-Spektroskopie (NIRS) für einen werks- oder baustellenseitigen Einsatz getestet. NIRS wird aufgrund kurzer Messzeiten, minimaler Probenvorbereitung und hoher Robustheit der Spektrometer häufig in der Prozessanalytik eingesetzt. Untersucht wurden 70 verschiedene Mineralwollen, wobei sich der Probenumfang sowohl aus werksneuen Proben mit Herstellerangaben als auch unbekannten Proben ohne Spezifikation zusammensetzen, die auf verschiedenen Baustellen in den Jahren 2016–2017 entnommen oder von Deponien zur Verfügung gestellt worden waren. Als Referenzmethode wurde die Röntgenfluoreszenzanalyse verwendet, um den Mineralwolle-Typ über den Elementgehalt nach VDI 3492 zu identifizieren. Mit Hilfe eines multivariaten Datenanalyseverfahrens konnte schließlich eine Methode etabliert werden, die eine zuverlässige Identifikation von unbekannten Mineralwollen anhand deren NIR-Spektren als Stein- bzw. Glaswolle ermöglicht. N2 - For the recirculation of artificial mineral wool resulting from deconstruction projects to the production process, it is necessary to distinguish between rock wool and glass wool. For this purpose, the potential of NIR spectroscopy (NIRS) was tested for the application directly on construction site or in factory. NIRS is often used in process analytics due to short measurement times, minimal sample preparation and high robustness of the spectrometers. In this study 70 mineral wool samples were examined, including both new samples with manufacturer`s specifications and unknown samples without specifications, which were taken at various German construction sites between 2016 and 2017 or which were provided by landfills. X-ray fluorescence spectroscopy was used as a reference method to identify the mineral wool type via the element content according to VDI 3492. With the help of a multivariate data analysis method finally a method was established, which allows a reliable identification of unknown mineral wool based on its NIR spectra as rock or glass wool. KW - Recycling KW - NIR KW - Baustoffe KW - Chemometrie PY - 2020 VL - 95 IS - 12 SP - 463 EP - 472 PB - VDI Fachmedien GmbH & Co. KG CY - Düsseldorf AN - OPUS4-51851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Kowarik, Stefan A1 - Liehr, Sascha T1 - Modular process control with compact NMR spectroscopy: From field integration to fully automated data analysis N2 - Chemical and pharmaceutical companies need to find new ways to survive successfully in a changing environment, while finding more flexible ways of product and process development to bring their products to market faster - especially high-value, high-end products such as fine chemicals or pharmaceuticals. This is complicated by changes in value chains along a potential circular economy. One current approach is flexible and modular chemical production units that use multi-purpose equipment to produce various high-value products with short downtimes between campaigns and can shorten time-to-market for new products. Online NMR spectroscopy will play an important role for plant automation and quality control, as the method brings very high linearity, matrix independence and thus works almost calibration-free. Moreover, these properties ideally enable automated and machine-aided data analysis for the above-mentioned applications. Using examples, this presentation will outline a possible more holistic approach to digitalization and the use of machine-based processes in the production of specialty chemicals and pharmaceuticals through the introduction of integrated and networked systems and processes. T2 - Benchtop NMR: From Academia to Industry CY - Online meeting DA - 28.09.2022 KW - Digital Transformatioin KW - Process Industry KW - Benchtop NMR Spectroscopy KW - Procee Analytical Technology KW - Modular Production KW - Specialty Chemicals KW - Industry 4.0 PY - 2022 UR - https://eventos.fct.unl.pt/benchtop_nmr_workshop2022/pages/welcome AN - OPUS4-55850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Illner, M. A1 - Meyer, Klas A1 - Paul, Andrea A1 - Esche, E. A1 - Maiwald, Michael A1 - Repke, J.-U. T1 - Operation and Optimal Control of Multiphase Systems – Hydroformylation in Microemulsions on the Mini-plant Scale N2 - Hydroformylation of short-chained olefins has been established as a standard industrial process for the production of C2 to C6 aldehydes. Using aqueous solutions of transition metal complexes these processes are carried out homogeneously catalyzed. A biphasic approach allows for highly efficient catalyst recovery. Regarding renewable feedstocks, the hydroformylation of long-chained alkenes (> C10) in a biphasic system, using highly selective rhodium catalysts has yet not been shown. Therefore, the Collaborative Research Center SFB/TR 63 InPROMPT develops new process concepts, involving innovative tuneable solvent systems to enable rather difficult or so far nonviable synthesis paths. One possible concept is the hydroformylation of long-chained alkenes in microemulsions. For this, a modular mixer-settler concept was proposed, combining high reaction rates and efficient catalyst recycling via the application of technical grade surfactants. The feasibility of such a concept is evaluated in a fully automated, modular mini-plant system within which the characteristics of such a multiphase system pose several obstacles for the operation. Maintaining a stable phase separation for efficient product separation and catalyst recycling is complicated by small and highly dynamic operation windows as well as poor measurability of component concentrations in the liquid phases. In this contribution, a model-based strategy is presented to enable concentration tracking and phase state control within dynamic mini-plant experiments. Raman spectroscopy is used as an advanced process analytical tool, which allows for online in-situ tracking of concentrations. Combined with optical and conductivity analysis optimal plant trajectories can be calculated via the solution of dynamic optimization problem under uncertainty. Applying these, a stable reaction yield of 40 % was achieved, combined with an oil phase purity of 99,8 % (total amount of oily components in the oil phase) and catalyst leaching below 0.1 ppm. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Hydroformylation KW - Micoemulsion KW - Dispersion KW - Process Analytical Technology KW - Mini-plant KW - EuroPACT PY - 2017 SP - 92 EP - 92 CY - Frankfurt a. M. AN - OPUS4-40230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Bienert, M. A1 - Gugin, Nikita A1 - Emmerling, Franziska A1 - Maiwald, Michael T1 - A database to select affordable MOFs for volumetric hydrogen cryoadsorption considering the cost of their linkers N2 - Physical adsorption at cryogenic temperature (cryoadsorption) is a reversible mechanism that can reduce the pressure of conventional compressed gas storage systems. Metal–organic framework (MOF) materials are remarkable candidates due to the combination of high specific surface area and density which, in some cases, provide a high volumetric storage capacity. However, such extensive use of MOFs for this application requires the selection of affordable structures, easy to produce and made from feasible metallic and organic components. Herein, we introduce a MOF database detailing the crystallographic and porous properties of 3600 existing MOFs made from industrially relevant metals and their organic composition. The comparison of the available minimum costs of linkers allowed the creation of a database to select affordable structures with high potential for volumetric hydrogen storage by cryoadsorption, considering their composition based on individual or mixed building blocks. A user inter� face, available online, facilitates the selection of MOFs based on the properties or names of structures and linkers. KW - MOF´s PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583619 DO - https://doi.org/10.1039/d3ma00315a VL - 4 IS - 18 SP - 4226 EP - 4237 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael A1 - Soruco Aloisio, Ricardo A1 - Meyer, Klas A1 - Klaus, Christian T1 - Auf dem Weg zu einer digitalen Qualitätsinfrastruktur - Eine Labor-Testplattform für die Integration von Sensoren und Messgeräten N2 - Um die internationale Spitzenposition deutscher Unternehmen der Prozessindustrie auch in Zukunft sicher zu stellen, müssen die Unternehmen ihre Prozesse und Geschäftsabläufe digitalisieren und gemeinsam mit der Forschung innovative neue Methoden, Apparate, Anlagen, Sensoren und Automatisierungstechnik sowie Datenkonzepte entwickeln. All dies erfordert den Aufbau neuer Fähigkeiten, Investition in Talente, interdisziplinäre Kommunikation zwischen verschiedenen Personen und Abteilungen und eine Bereitschaft zur Veränderung. KW - QI-Digital KW - Wasserstofftankstelle KW - IT-OT-Testplattform KW - Prozessindustrie PY - 2023 VL - 67 IS - 9 SP - 20 EP - 23 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58461 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - NMR spectroscopy for online monitoring and process control N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - REsearch and Development Seminar, Syngenta Crop Protection AG CY - Münchwilen, Switzerland DA - 22.05.2018 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Benchtop NMR spectroscopy PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Online NMR spectroscopy paves the way for short development times in industrial reaction and process monitoring N2 - Modular chemical production is a tangible implementation of the digital transformation of the specialty chemicals process industry. In particular, it enables acceleration of process development and thus faster time to market by flexibly interconnecting and orchestrating standardized physical modules and bringing them to life. For this purpose, specific (chemical) sensors of process analytics are needed, preferably without lengthy calibration or spectroscopic model development. An excellent example of a "direct" analytical method is online nuclear magnetic resonance (NMR) spectroscopy. NMR spectroscopy meets the requirements of a direct analytical method because of the direct correlation between the signal area in the spectrum ("counting" the nuclear spins) and the analyte amount of substance concentrations. It is also extremely linear over the concentration range. With the availability of compact benchtop NMR instruments, it is now possible to bring NMR spectroscopy directly into the field, in close proximity to specialized laboratory facilities, pilot plants, and even industrial-scale production facilities. The first systems are in TRL 8 (Qualified System with Proof of Functionality in the Field). The presentation will discuss the many building blocks of online nuclear magnetic resonance spectroscopy, from flow cells to automated data analysis. T2 - SFB 1527 HyPERiON “High Performance Compact Magnetic Resonance“ Online Seminar CY - Karlsruhe, Germany DA - 06.07.2023 KW - Online NMR Spectroscopy KW - Process Monitoring KW - Reaction Monitoring KW - Industry 4.0 KW - Automation KW - Modular Production PY - 2023 AN - OPUS4-57862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Carl, Peter A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Spektroskopische Untersuchungen an Bioprozess- Simulationsproben N2 - Zur Onlineüberwachung von Fermentationsprozessen werden zunehmend schwingungsspektroskopische (Raman-, Mittel- und Nahinfrarotspektroskopie (NIRS) und UV-/VIS- Methoden(Absorptions- und Fluoreszenzspektroskopie) in Kombination mit multivariater Auswertung eingesetzt. Anliegen dieser Arbeit war es, zu testen, welche Verfahren für die spektroskopische On- und Offlineüberwachung des Fermentationsprozesses zur biotechnologischen Herstellung einer Malariavaccine grundlegend geeignet sind und welche Messbereiche und Genauigkeiten der Vorhersage im Idealfall bei der Abwesenheit von Hefezellen erzielt werden können. T2 - 10. Kolloquium Arbeitskreis Prozessanalytik CY - Gerlingen, Germany DA - 25.11.2014 KW - Prozessanalytik KW - Prozess-Sensoren KW - Bioprozess KW - Prozess-Spektroskopie KW - Raman-Spektroskopie KW - Nahinfrarot-Spektroskopie KW - Fluoreszenz-Spektroskopie PY - 2014 UR - http://arbeitskreis-prozessanalytik.de/images/stories/Veranstaltungen/Kolloquien/10_kolloquium_2014/tagungsband_10_kolloquium_ak_prozessanalytik_2014_hq-druck_f.pdf SP - P13, 35 EP - 35 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-38362 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hampel, U. A1 - Schütze, A. A1 - Rädle, M. A1 - Rück, T. A1 - Krawczyk-Becker, M. A1 - Musch, T. A1 - Maiwald, Michael A1 - Fröhlich, H. J. A1 - Zeck, S. T1 - Positionspapier Sensorik für die Digitalisierung chemischer Produktionsanlagen N2 - Die chemische Industrie steht derzeit, wie viele andere Industriebereiche, vor den Herausforderungen einer Digitalisierung der Produktion. Sie ist der Schlüssel für die Flexibilisierung von Prozessen und Anlagen, für die Verkürzung von Produkteinführungszeiten sowie für den Zuschnitt der Produktion auf wechselnde Nachfrage und kürzere Produktlebenszyklen. Die Messtechnik und Sensorik spielt neben der intelligenten Datenverarbeitung eine Schlüsselrolle für die Digitalisierung. Flexiblere Anlagen benötigen Sensorik zur Überwachung des Anlagenzustandes, zur Früherkennung nicht bestimmungsgemäßer Betriebszustände sowie für eine bedarfsgerechte Wartung. Da die Entwicklung neuer und verbesserter Messtechnik und Sensorik grundlegend aus verschiedenen Richtungen gedacht werden muss, haben sich Akteure aus verschiedenen Branchen zusammengetan und dieses Positionspapier erstellt. Es basiert auf einer grundlegenden Analyse des Ist-Stands sowie des Bedarfs der Industrie, die unter anderem auf einem eigens dafür durchgeführten Workshop mit Sensorentwicklern, Anlagenherstellern sowie Anlagenbetreibern am 18. Juni 2019 bei der DECHEMA in Frankfurt a. M. diskutiert wurden. Diese Aktivitäten wurden maßgeblich von der Initiative Wanted Technologies der ProcessNet sowie dem AMA Verband für Sensorik und Messtechnik e.V. initiiert. KW - Prozessindustrie KW - Smarte Sensoren KW - Prozessanalytik KW - DECHEMA KW - Positionspapier PY - 2020 UR - https://dechema.de/Sensorik SP - 1 EP - 20 PB - DECHEMA CY - Frankfurt am Main AN - OPUS4-50403 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - OPC-UA für Prozessindustrie und Laborwelt - Offener Standard für die störungsfreie Kommuniktaion N2 - Im privaten Umfeld machen wir uns keine Gedanken mehr über die Einbindung von elektronischen Geräten in Netzwerke, sei es bei der Verbindung des Mobiltelephons mit dem W-Lan-Netzwerk des Hotels oder von Freunden oder des drahtlosen Kopfhörers mit dem Notebook: Wir erwarten, dass es auf Anhieb funktioniert. Dahinter stecken offene Standards für die Konnektivität. Dafür braucht man immer zwei Dinge: Einen physischen Kommunikationskanal, auf dem die Datenpakete zwischen den Komponenten und Geräten hin- und herwandern und eine einheitliche Kommunikationssprache, so dass sich die Komponenten und Geräte auch untereinander verstehen, weil sie dieselbe Sprache sprechen und automatisch wissen, was sie miteinander zu besprechen haben. Wenn man eine sichere Konnektivität bevorzugt, werden weitere Informationen benötigt, wie etwa ein Passwort. Auch für die störungsfreie Kommunikation aller Automatisierungskomponenten der Prozessindustrie untereinander oder etwa für die Kommunikation von Geräten in einem analytischen Labor wird ein einheitliches Protokoll (Kommunikationssprache) und ein einheitlicher Feldbus (Kommunikationskanal) benötigt. Mittlerweile gilt der Standard OPC Unified Architecture (OPC-UA) für das Erstere als gesetzt und kann als ein kleiner Triumph von Industrie 4.0 betrachtet werden. OPC-UA kann auf verschiedenen Kommunikationskanälen laufen – am liebsten solchen, die eine angemessene Bandbreite oder Datenrate haben. Was den dazu notwendigen physischen Kommunikationskanal betrifft, findet man aus verschiedenen Gründen einen sehr spezialisierten und historisch über Jahrzehnte gewachsenen Lebensraum vor, der Operational Technology (OT) genannt wird. Zumeist findet man Zwei- und Vierdraht-Techniken mit Strom- und Spannungs-Signalübertragung, zum Beispiel mit 4–20 mA. Kommunikationsstandards wie eingangs erwähnt, wie Ethernet oder W-Lan sind absolut die Seltenheit. Dieses wird für die sogenannte Informationstechnik (Information Technology, IT) eingesetzt und ist aus Sicherheitsgründen heute komplett von der OT getrennt. Auch wenn es der OT nicht gefällt, wachsen die beiden Welten IT und OT aber stetig weiter zusammen, da die IT bereits viele funktionierende und preislich attraktive Lösungen bereithält. Die vermeintliche Sicherheit, Verfügbarkeit und Echtzeitfähigkeit der klassischen OT, aber auch ihre Komplexität müssen im Zuge der Digitalen Transformation nun sorgfältig abgewogen werden. KW - Prozessindustrie KW - Laborkommunikation KW - Konnektivität KW - OPC-UA KW - Digital Transformation KW - Labor-IT PY - 2021 UR - https://analyticalscience.wiley.com/do/10.1002/was.00170277/full/blaetterkatalog_git1021.pdf SN - 0016-3538 VL - 65 IS - 10 SP - 1 EP - 4 PB - Wiley CY - Weinheim AN - OPUS4-53566 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. Recently, AI procedures have also been successfully used for NMR data evaluation. In order to overcome the typical limitation of too small data sets from process developments, a new method was tested, which allows a physically motivated multiplication of the available reference data together with context information in order to obtain a sufficiently large data set for the training of machine learning algorithms. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Compact NMR: Perspectives for (Bio)process Monitoring CY - Online meeting DA - 14.10.2020 KW - Process Industry KW - Real-time Process Monitoring KW - NMR Spectroscopy KW - Indirect Hard Modelling KW - Modular Production PY - 2020 AN - OPUS4-51430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Maiwald, Michael A1 - Gornushkin, Igor B. A1 - Ostermann, Markus ED - Gauglitz, G. ED - Moore, D.S. T1 - Trends in spectroscopic techniques for process control N2 - New developments in spectroscopic techniques for process control are, in general, driven by shortcomings of existing technology, for example, when sensitivity, selectivity, robustness, and so forth do not meet the demands. The perfect process analytical method would be based on a robust and easy to handle customized technique operating in real time, come without any need for calibration, that is, be an absolute method, have a professional support, and be compliant to increasing regulatory requirements. However, there are at least trends toward such an all-in-one device suitable for every purpose. Small, low-field NMR systems equipped with permanent magnet technology have been developed and allow for quantitative analysis as on-line instruments in a production environment. Quantitative high-resolution on-line NMR spectroscopy contributes to process understanding in pilot plant and research environments. Laser spectroscopy is a promising field in process analysis owing to its sensitivity and selectivity. Laser-induced breakdown spectroscopy LIBS is a promising field for direct in situ analysis and remote sensing. Applications of quantum-cascade lasers for process analytical applications are a promising technique. Techniques such as cavity ring-down spectroscopy (CRDS), tunable diode laser absorption spectroscopy (TDLAS), and photothermal techniques are briefly introduced. Recent developments of new detectors have improved X-ray fluorescence analysis (XRF) for qualitative and quantitative on-line evaluation of the elementary composition of liquid or solid samples, regardless of whether compact or bulk material. The chapter also introduces miscellaneous techniques such as ion mobility spectroscopy (IMS), microwave and dielectric spectroscopy, terahertz spectroscopy, ultrasonic acoustic spectroscopy, and other methods. KW - Process analytical technology (PAT) KW - NMR spectroscopy KW - IMS KW - CRDS KW - TDLAS KW - LIBS KW - Prozessanalytik KW - X-ray fluorescence KW - Terahertz spectroscopy PY - 2014 SN - 978-3-527-32150-6 DO - https://doi.org/10.1002/9783527654703.ch41 VL - 3 SP - Chapter 41, 1419 EP - 1438 PB - Wiley-VCH AN - OPUS4-31859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Teil der Revolution - Prozessanalysentechnik: Kernstück von "Industrie 4.0"? N2 - Ohne die vielfältigen Messmethoden der Prozess­analysentechnik (PAT) sind viele moderne Anlagen der verfahrenstechnischen Industrie heute nicht mehr wirtschaftlich oder sicher zu betreiben. Dementsprechend ­erfährt die sich mittlerweile immer mehr als selbstständig etablierende Branche Prozessanalysentechnik einen großen Zuwachs und ­eine ­spannende Dynamik. Sie ermög­licht eine Produktion in der geforderten Produktqualität unter optimaler Ausnutzung von Rohstoffen, Anlagen und Energie. KW - Prozessanalytik KW - Industrie 4.0 KW - Pharmazeutische Produktion KW - Process analytical technology PY - 2014 SN - 2191-3803 VL - 5 IS - 04 SP - 10 EP - 12 PB - Succidia AG, Verl. und Kommunikation CY - Darmstadt AN - OPUS4-31435 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Blazek, M. A1 - Deilmann, M. A1 - Gasch, A. A1 - Gerlach, M. A1 - Grümbel, F. A1 - Kaiser, U. A1 - Kloska, M. A1 - Löbbecke, S. A1 - Maiwald, Michael A1 - Pötter, T. A1 - Rebner, K. A1 - Roos, E. A1 - Stieler, S. A1 - Stolz, D. A1 - Theuer, M. A1 - Berthold, J. A1 - Engelhard, H. T1 - Technologie-Roadmap "Prozesssensoren 4.0" N2 - Mit den Technologie-Roadmaps „Prozesssensoren 2005–2015“ [1] (2006) und „Prozesssensoren 2015+“ [2] und [3] (2009) wurden Grundlagen für alle Unternehmen der Prozessindustrie geschaffen, um zielgerichtet auf Kundenbedürfnisse der Prozessindustrie zugeschnittene Produktentwicklungen, technologische Weiterentwicklungen und Forschungsprojekte zum Erfolg zu bringen. Die Roadmap „Prozesssensoren 2015+“ fand große Akzeptanz aufgrund der soliden Betrachtung der Prozesse und der daraus abgeleiteten Thesen. Diese Aussagen haben in vollem Umfang weiterhin Gültigkeit. Im Rückblick auf die damals formulierten Entwicklungsziele wurden viele dieser Ziele im prognostizierten Zeithorizont auf den Weg gebracht und teilweise bereits umgesetzt. In dieser Technologie-Roadmap werden einige Beispiele dazu aufgezeigt. KW - Roadmap KW - Industrie 4.0 KW - Prozess-Sensoren KW - Prozessanalytik KW - Sensoren PY - 2015 UR - http://www.namur.net/fileadmin/media_www/Roadmap_Dateien/Roadmap_Prozesssensoren_4.0.pdf SP - 1 EP - 36 AN - OPUS4-34947 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Die neue Technologie-Roadmap "Prozess-Sensoren 4.0" T2 - NAMUR-Hauptsitzung 2015 CY - Bad Neuenahr, Germany DA - 2015-11-05 PY - 2015 AN - OPUS4-35062 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Towards "Process Sensors 4.0" - How to turn the vision to a mission? T2 - EPoSS Annual Forum 2015 CY - Leuven, Belgium DA - 2015-10-11 PY - 2015 AN - OPUS4-35059 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Zientek, Nicolai A1 - Paul, Andrea T1 - qNMR forever – reference material metrology at high pressures and high purities N2 - Due to recent advances in technical developments of NMR instruments such as acquisition electronics and probe design, detection limits of components in liquid mixtures were improved into the lower ppm range (approx. 5–10 ppm amount of substance). This showed that modern NMR equipment is also suitable for the observation of hydrocarbon samples in the expanded fluid phase or gas phase. Since Quantitative NMR spectroscopy (qNMR) is a direct ratio method of analysis without the need of calibration it was used to determine impurities in appropriate liquid and liquefied hydrocarbon isomers up to C6, which are used for preparation of primary gas standards, e.g., natural gas or exhaust gas standards. At the same time it is possible to yield structural information with a minimum of sample preparation. Thus, cross contaminations between different isomers of the observed hydrocarbons and their (NMR-active) impurities can be identified and quantified. In general, most quantitative organic chemical measurements rely on the availability of highly purified compounds to act as calibration standards. The traceability and providence of these standards is an essential component of any measurement uncertainty budget and provides the final link of the result to the units of measurement, ideally the SI. The more recent increase in the use of qNMR for the direct assessment of chemical purity however can potentially improve the traceability and reduce the uncertainty of the measured chemical purity at a reduced cost and with less material. For example the method has beneficially been used by National Measurement institutes for recent CCQM comparisons including the CCQM–K55 series of purity studies. Traditional ‘indirect’ methods of purity analysis require that all impurities are identified and quantified, leading to a minimum of 4 individual analytical methods (organic impurities, water, solvents, inorganic residue). These multiple technique approaches measure an array of different chemical impurities normally present in purified organic chemical compounds. As many analytical methodologies have compound-specific response factors, the accuracy and traceability of the purity assessment is dependent on the availability of reference materials of the impurities being available. qNMR provides the most universally applicable form of direct purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. The development of CRMs addressing qNMR specific measurement issues will give analysts compounds ideally suited for the analytical method and also provide full characterisation of qNMR related parameters to enable more realistic uncertainty budgets. These materials will give users the tools to exploit qNMR more easily and enable them to speed up analytical method development and reduce the time and financial burden of multiple analytical testing. T2 - 3rd Practical Application of NMR in Industry Conference (PANIC) 2015 CY - La Jolla, CA, USA DA - 09.02.2015 KW - qNMR KW - Quantitative NMR-Spektroskopie KW - Reference Material KW - Metrology PY - 2015 AN - OPUS4-36144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Zientek, Nicolai A1 - Meyer, Klas A1 - Kern, Simon A1 - Paul, Andrea T1 - Quantitative and online NMR Spectroscopy at BAM N2 - Online NMR spectroscopy, Determination of impurities of fluids, NMR process Monitoring, purity assessment T2 - NMR-Kolloquium Buchs CY - Buchs, Switzerland DA - 29.05.2015 KW - qNMR KW - Quantitative NMR-Spektroskopie KW - Online NMR Spectroscopy KW - Reaction monitoring KW - Reference material KW - Metrology PY - 2015 AN - OPUS4-36143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Innovationen in der Prozessanalytik – Welches sind die neuen Herausforderungen? N2 - Der Vortrag stellt die aktuellen Forschungsschwerpunkte zum Thema Prozessanalytik an der Bundesanstalt für Materialforschung und -prüfung (BAM) vor und nennt aktuelle Entwicklungsfelder mit dem Ziel gemeinsamer F&E-Projekte. Zunächst wird die Prozessindustrie und ihre Wertschöpfungskette vorgestellt. Daraus ergibt sich eine Motivation für Prozessanalytik. Zwischen der Prozessanalytik in der Pharmazeutische Industrie und der Chemischen Industrie bzw. Verfahrenstechnik gibt es Unterschiede, die herausgearbeitet werden. Der Vortrag schließt mit Technologiewünschen und Technologievisionen und nennt Konkrete Beispiele für Visionen für PAT, insbesondere im Kontext des Zukunftsprojekts „Industrie 4.0“ T2 - Innovationen entwickeln – Von der Idee bis zum Projektstart CY - Göttingen, Germany DA - 11.12.2014 KW - Prozessanalytik KW - Prozessindustrie KW - Innovationen KW - Pharmazeutische Industrie KW - Technologiewünsche KW - Technologievisionen KW - Industrie 4.0 PY - 2014 AN - OPUS4-36146 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Zientek, Nicolai T1 - Towards online reaction monitoring with fully automated NMR data evaluation and modelling - Current results from simultaneous 19F-1H medium resolution NMR experiments N2 - NMR Process Monitoring Towards an automated field integration T2 - 3rd Practical Applications of NMR in Industry Conference (PANIC) - Mestrelab users' meeting CY - La Jolla, CA, USA DA - 08.02.2015 KW - Online NMR spectroscopy KW - Reaction monitoring KW - Prozessanalytik KW - Process analytical technology PY - 2015 AN - OPUS4-36145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Forschung und Entwicklung für Prozessanalytik und Automatisierung in der Prozessindustrie N2 - Neue Prozess-Sensoren für neue Produktionskonzepte. Wie entsteht Innovation? Forschungsimpulse aus der Technologie-Roadmap „Prozess-Sensoren 2015+“. Herausforderungen durch das Zukunftsprojekt „Industrie 4.0“. Technologie-Roadmap „Prozess-Sensoren 4.0“ T2 - ACHEMA 2015: Automation im Dialog – Meet the experts CY - Frankfurt a. M., Germany DA - 15.06.2015 KW - Industrie 4.0 KW - Smart Sensors KW - Smarte Sensoren KW - Process Analytical Technology KW - Prozessanalytik PY - 2015 AN - OPUS4-36142 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - qNMR spectroscopy has grown up to an original discipline – a review of recent international activities N2 - Quantitative NMR Spectroscopy (qNMR) provides the most universally applicable form of direct purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. Broadly accepted validation methods of qNMR spectroscopy will give users the tools to exploit qNMR more easily and enable them to speed up analytical method development and reduce the time and financial burden. The first initiative towards a worldwide agreement goes back to a panel discussion at PANIC 2014 (Practical Applications of NMR in Industry Conference) in Chicago. Since that, the Validation Workshop takes place following the PANIC Conference each year, last in 2017 with a turnout of over 50 people. The group aims at identifying a network of NMR people concerned with validation that can ultimately assist each other through the validation process, harmonize the terminology and a standard approach for NMR validations and position the guidelines produced by consensus of the NMR community so that accreditation agencies can use this process. T2 - qNMR Minisymposium CY - Baveno, Italy DA - 21.09.2017 KW - qNMR KW - Quantitative NMR Spectroscopy KW - Purity Analysis KW - SMASH KW - qNMR Summit PY - 2017 AN - OPUS4-42148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael ED - Pinnow, C. J. ED - Schäfer, S. T1 - "Prozess‐Sensoren 4.0" – Chancen für neue Automatisierungskonzepte und neue Geschäftsmodelle in der Prozessindustrie N2 - Prozess-Sensoren 4.0 vereinfachen ihre Einbindung über Plug and Play, obwohl sie komplexer werden. Sie bieten Selbstdiagnose, Selbstkalibrierung und erleichterte Parametrierung. Über die Konnektivität ermöglichen die Prozess-Sensoren den Austausch ihrer Informationen als Cyber-physische Systeme mit anderen Prozess-Sensoren und im Netzwerk. Der Aufbruch von der aktuellen Automation zum smarten Sensor hat bereits begonnen. Automatisierungstechnik und Informations- und Kommunikationstechnik (IKT) verschmelzen zunehmend. Wenn die Prozessindustrie dieses nicht definiert, tun es andere. Für die weitere Entwicklung von der Ist‐Situation zu einer Industrie-4.0-Welt in der Prozessindustrie werden mehrere Szenarien diskutiert. Diese reichen vom erleichterten Abruf sensorbezogener Daten über zusätzliche Kommunikationskanäle zwischen Sensor und mobilen Endgeräten über vollständig bidirektionale Kommunikation bis hin zur Einbindung der Cloud und des Internets in virtualisierte Umgebungen. Um zu einer störungsfreien Kommunikation aller Sensoren untereinander zu kommen, muss mindestens ein einheitliches Protokoll her, das alle Sensoren sprechen und verstehen. Der derzeit greifbarste offengelegte Standard, der moderne Kommunikationsanforderungen erfüllt, ist OPC Unified Architecture (OPC-UA). Viele halten das Sortieren der Kommunikationsstandards für eines der wesentlichen Errungenschaften von Industrie 4.0. Eine Topologie für smarte Sensoren, das Zusammenwirken mit daten- und modellbasierte Steuerungen bis hin zur Softsensorik sowie weitere Anforderungen an Sensoren sind jedoch heute noch nicht angemessen beschrieben. Wir müssen jetzt schnell die Weichen für eine smarte und sichere Kommunikationsarchitektur stellen, um zu einer störungsfreien Kommunikation aller Sensoren auf Basis eines einheitlichen Protokolls zu kommen, welches alle Sensoren ausgeben und verstehen. Aktuelle und zukünftige öffentliche Förderung von Industrie 4.0-Projekten sind eine gute Investition. Wegen der hohen Komplexität und Interdisziplinarität gelingt die Umsetzung nur gemeinsam zwischen Anwendern aus der Prozessindustrie, Software- und Geräteherstellern und Forschungsgruppen. Anwender sind gefragt, diese neue Technologie durch eine beschleunigte Validierung und Akzeptanz umzusetzen. Sie erhalten die einzigartige Chance, ihre Prozesse und Anlagen wettbewerbsfähig zu halten. Kooperativ betriebenen F&E-Zentren und gemeinsam anerkannten Applikationslaboren kommt dafür eine hohe Bedeutung zu. T2 - Tagung Industrie 4.0 - "Safety und Security - Mit Sicherheit gut vernetzt", Hochschule für Technik und Wirtschaft CY - Berlin, Germany DA - 28.04.2017 KW - Prozessanalytik KW - Online-NMR-Spektroscopie KW - Industrie 4.0 KW - Automatisierung KW - Prozessindustrie KW - Smarte Sensoren KW - Sensoren PY - 2017 SN - 978-3-410-26406-4 SP - 135 EP - 150 PB - Beuth CY - Berlin AN - OPUS4-43436 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Using Smart Sensors and Modular Production Units - For Sustainable and Flexible Production of High Quality Chemicals and Pharmaceuticals N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. The talk also generally covers current aspects of high-field and low-field online NMR spectroscopy for reaction monitoring and process control giving also an overview on direct dissolution studies of API cocrystals. T2 - Pfizer Analytical Chemistry Seminar CY - Pfizer Global Research & Development, Groton, CT, USA DA - 01.03.2018 KW - Online NMR Spectroscopy KW - Process sensors KW - Process analytical technology KW - Indirect Hard Modeling KW - Dissolution studies KW - CONSENS PY - 2018 AN - OPUS4-44347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Paul, Andrea A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Illner, M. A1 - Müller, D. A1 - Esche, E. A1 - Wozny, G. T1 - Prozess-Spektroskopie in Mikroemulsionen für das Online-Monitoring einer homogenen Hydroformylierungsanlage N2 - Homogen katalysierte Reaktionsschritte sind ein wichtiges Werkzeug in der chemischen Industrie. Durch die milden Reaktionsbedingungen hinsichtlich Temperatur und Druck bei gleichzeitig hoher Selektivität bieten diese die Möglichkeit energieeffizienter und ressourcenschonender Produktionsschritte. Eine der wichtigsten industriellen Anwendungen bildet die Hydroformylierung. Hier besteht das Katalysatorsystem meist aus Übergangsmetallkomplexen, vorwiegend Kobalt und Rhodium, die zur Steuerung der Selektivität und Löslichkeit mit mehrzähnigen Liganden koordiniert sind. Diese Komplexe liegen für eine effiziente Katalysator-rückführung in wässriger Lösung vor, was jedoch die Anwendbarkeit auf kurzkettige Edukte mit hinreichender Wasserlöslichkeit beschränkt. Ein möglicher Lösungsansatz für die Verwendung langkettiger Alkene ist die Umsetzung der Reaktion in einer Mikroemulsion. Durch die gesteigerte Phasen-grenzfläche besteht ein effektiver Kontakt von Katalysator und Reaktanden bei gleichzeitiger Möglichkeit der Produktseparation durch Phasentrennung, während der Katalysator dem Reaktionsschritt zurückgeführt wird und das Verfahren damit wirtschaftlich macht. Am Beispiel der Reaktion von 1-Dodecen zu Tridecanal wird der Einsatz von Online-NMR- und -Raman-Spektroskopie für die Prozessanalytik (sowie Applikation von komplexen Regelungskonzepten) innerhalb eines mizellaren Systems demonstriert. Ein speziell konzipierter Laboraufbau ermöglicht die Durchführung von Experimenten unter Prozessbedingungen für die in Mikroemulsionen äußerst anspruchsvolle Entwicklung und Kalibrierung von multivariaten Modellen für die Raman-Spektroskopie. Diese konnten anschließend im Rahmen einer mehrtägigen Betriebs-studie einer Miniplant am realen technischen System erprobt werden. T2 - Bruker Optics Anwendertreffen 2017 CY - Ettlingen, Germany DA - 07.11.2017 KW - Prozessanalytik KW - Reaktionsmonitoring KW - Industrie 4.0 KW - Online-Raman-Spektroskopie KW - Online-NMR-Spektroskopie KW - Hydroformylierung KW - Mikroemulsionen PY - 2017 AN - OPUS4-42753 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Colson, K. A1 - Schönberger, T. T1 - The q in NMR – a review of recent international activities N2 - Quantitative NMR Spectroscopy (qNMR) provides the most universally applicable form of direct purity determination without need for reference materials of impurities or the calculation of response factors for all samples exhibiting suitable NMR properties. Broadly accepted validation methods of qNMR spectroscopy gives users tools to exploit qNMR more easily and enables rapid analytical method development and reduce time and financial burdens. The first initiative towards a worldwide agreement goes back to a panel discussion at PANIC 2014 (Practical Applications of NMR in Industry Conference) in Chicago. Since that time, the Validation Workshop takes place each year following the PANIC Conference, last in 2017 with a turnout of over 65 people. The group aims to identifying a network of NMR people concerned with validation that can ultimately assist each other through the validation process, harmonize the terminology and a standard approach for NMR validations and position the guidelines produced by consensus of the NMR community so that accreditation agencies can use this process. The talk briefly summarises the outcome of the former PANIC Validation Workshops (2015, 2016, and 2017) as well as the recent satellite meetings including the qNMR meeting held at Spectral Service in Cologne, Germany (June 2016), a validation workshop at SMASH (La Jolla, USA, September 2016), the qNMR Summit with USP in Rockville, USA (October 2016), the qNMR Summit at BAM in Berlin, Germany (March 2017), and the qNMR Minisymposium at SMASH in Baveno, Italy (September 2017). Upcoming activities will be a qNMR Summit held by JP and JEOL in Tokyo, Japan (January 29th-30th, 2018) and a qNMR Summit at the University of Würzburg, Germany (planned for October 2018). The next PANIC takes place March 4th-8th, 2018 in La Jolla (San Diego), CA, USA. Further Information can be found under: http://www.validnmr.com T2 - qNMR Day CY - Politecnico di Bari, Bari, Italy DA - 24.11.2017 KW - qNMR KW - Quantitative NMR Spectroscopy KW - NMR validation KW - qNMR Summit KW - Direct purity determination PY - 2017 UR - http://www.gidrm.org/index.php/activities/workshops/2017-workshops/qnmr-day-a-gidrm-organized-in-cooperation-with-girm AN - OPUS4-43118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - qNMR metrology and current "primary" reference material activities N2 - In general, most quantitative organic chemical measurements rely on the availability of highly purified compounds to act as calibration standards. The traceability and providence of these standards is an essential component of any measurement uncertainty budget and provides the final link of the result to the units of measurement, ideally the SI. The more recent increase in the use of qNMR for the direct assessment of chemical purity however can potentially improve the traceability and reduce the uncertainty of the measured chemical purity at a reduced cost and with less material. For example, the method has beneficially been used by National Metrology Institutes for comparisons including comparisons on CCQM (Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology, www.bipm.org). First comparisons started 1998 with CCQM-P3 (Organics in solution) or CCQM-P35 (2002, EtOH in solution), were underpinned by a broad range of polarity and molecular size (CCQM–K55 series of purity studies including Valine, Aldrin, or Folic acid) and were continued with the recent pilot studies CCQM-P150 (2014, purity of Dimethyl sulfone) or CCQM-P150b (2017, purity of Pyributicarb). Traditional ‘indirect’ methods of purity analysis require that all impurities are identified and quantified, leading to a minimum of four individual analytical methods (organic impurities, water, solvents, inorganic residue). These multiple technique approaches measure an array of different chemical impurities normally present in purified organic chemical compounds. As many analytical methodologies have compound-specific response factors, the accuracy and traceability of the purity assessment is dependent on the availability of reference materials of the impurities being available. qNMR provides the most universally applicable form of direct purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. The development of CRMs addressing qNMR specific measurement issues will give analysts compounds ideally suited for the analytical method and also provide full characterisation of qNMR related parameters to enable more realistic uncertainty budgets. These materials will give users the tools to exploit qNMR more easily and enable them to speed up analytical method development and reduce the time and financial burden of multiple analytical testing. Due to recent advances in technical developments of NMR instruments such as acquisition electronics and probe design, detection limits of components in liquid mixtures were improved into the lower ppm range (approx. 5–10 ppm amount of substance) qNMR studies increasingly attract broader interest. T2 - qNMR Day CY - Politecnico di Bari, Bari, Italy DA - 24.11.2017 KW - qNMR KW - Quantitative NMR spectroscopy KW - qNMR metrology KW - Primary reference material KW - Comparison study KW - Direct purity determination PY - 2017 UR - http://www.gidrm.org/index.php/activities/workshops/2017-workshops/qnmr-day-a-gidrm-organized-in-cooperation-with-girm AN - OPUS4-43119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Wander, Lukas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Mathematical and statistical tools for online NMR spectroscopy in chemical processes N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied, which require excessive calibration effort. NMR spectroscopy has a high potential for direct loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and harsh environments for advanced process Monitoring and control, as demonstrated within the European Union’s Horizon 2020 project CONSENS. We present a range of approaches for the automated spectra analysis moving from conventional multivariate statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants or derivatives and robust automation schemes. T2 - 13. Dresdner Sensor Symposium CY - Dresden, Germany DA - 04.12.2017 KW - Online NMR spectroscopy KW - Process control KW - Partial least squares regression KW - Indirect hard modeling KW - Quantum mechanics KW - First principles PY - 2017 UR - https://www.ama-science.org/proceedings/details/2748 SN - 978-3-9816876-5-1 DO - https://doi.org/10.5162/13dss2017/P2.07 SP - P2, 209 EP - 212 PB - AMA Service GmbH CY - Berlin AN - OPUS4-43254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael ED - Maiwald, Michael T1 - Validation report on NMR N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug and play integration, even though they may appear to be more complex at first sight. Smart sensors enable concepts like self-diagnostics, self-calibration, and self-configuration/ parameterization whenever our current automation landscape allows it. Here we summarize the currently discussed general requirements for process sensors 4.0 and introduce a smart online NMR sensor module as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consensspire.eu). KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Process Control KW - Process Analytical Technology KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435521 SP - 1 EP - 31 AN - OPUS4-43552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Voll integrierte und vernetzte Systeme und Prozesse - Perspektive: Smarte Sensorik, Aktorik und Kommunikation T1 - Fully integrated distributed systems and processes – Perspective: Smart sensors, actuators, and communication N2 - Unternehmen der chemischen Industrie müssen neuen Pfade beschreiten, um in einem veränderten Umfeld erfolgreich bestehen zu können. Dazu gehört insbesondere, das Potenzial digitaler Technologien zu nutzen. Die volle Integration und intelligente Vernetzung von Systemen und Prozessen kommt allerdings nur zögerlich voran. Dieser Beitrag ist ein Loblied auf die Feldebene. Er möchte dazu ermutigen, die Digitalisierung der Prozessindustrie auf Basis smarter Sensorik, Aktorik und Kommunikation ganzheitlicher zu denken und informiert über aktuelle technische Perspektiven, wie das Ein-Netzwerk-Paradigma, Ad-hoc-Vernetzungen, Edge-Computing, FPGAs, virtuelle Maschinen oder Blockchain. Diese geben smarter Sensorik, Aktorik und Kommunikation eine völlig neue Perspektive. N2 - Chemical companies must find new paths to success in a changing environment. In particular, this will involve exploiting the potential of digital technologies. However, the full integration and intelligent interconnection of systems and processes is only making slow progress. This contribution aims to encourage the more comprehensive use of digitization in the process industry based on smart sensors, actuators, and communications, and informs about current technical possibilities such as the “one-network paradigm”, ad-hoc connections, edge computing, FPGAs, virtual machines and blockchain. These offer a new scope for smart sensors, actuators, and communications. KW - Smarte Sensoren KW - Smarte Aktoren KW - Digitalisierung der Prozessindustrie KW - Prouess-Sensoren 4.0 KW - Smart sensors KW - Smart actuators KW - Digitization of process industry KW - Process sensors 4.0 PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-466642 DO - https://doi.org/10.17560/atp.v60i10.2376 SN - 2364-3137 VL - 60 IS - 10 SP - 70 EP - 85 PB - Vulkan Verlag CY - Essen AN - OPUS4-46664 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Kern, Simon A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Paul, Andrea T1 - Already Producing or Still Calibrating? – Online NMR Spectroscopy as Smart Field Device. N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. T2 - Tackling the Future of Plant Operation - Jointly towards a Digital Process Industry CY - Barcelona, Spain DA - 13.12.2017 KW - Process Monitoring KW - Smart Sensors KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Process Analytical Technology KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434330 AN - OPUS4-43433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Sustainable and Flexible Production of High Quality Chemicals and Pharmaceuticals Using Smart Sensors and Modular Production Units N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. The talk also generally covers current aspects of high-field and low-field online NMR spectroscopy for reaction monitoring and process control and gives also an overview on direct dissolution studies of API cocrystals. T2 - Chemistry Group Seminar Pfizer Inc. CY - La Jolla, California, USA DA - 09.03.2018 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Smart Sensors KW - Indirect Hard Modeling KW - Modular Production KW - CONSENS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444382 AN - OPUS4-44438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Quantitative NMR Spectroscopy Uncertainty Analysis Workshop N2 - qNMR provides the most universally applicable form of direct concentration or purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. The workshop presents basic terms of statistics and uncertainty analysis, which are the basis for qNMR spectroscopy and data analysis such as, e.g., standard deviations, linear regression, significance tests, etc. and gives typical examples of applications in qNMR spectroscopy. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) Validation Workshop 2018 CY - La Jolla, California, USA DA - 08.03.2018 KW - qNMR KW - NMR Validation KW - Basic Statistics KW - Linear Regression PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444395 AN - OPUS4-44439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Meyer, Klas A1 - Paul, Andrea T1 - Already Producing or Still Calibrating? – Advances of Model-Based Data Evaluation Concepts for Quantitative Online NMR Spectroscopy N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - Practical Applications of NMR in Industry Conference (PANIC) 2018 CY - La Jolla, California, USA DA - 04.03.2018 KW - Process Monitoring KW - Process Control KW - Process analytical technology KW - Spectral Modeling KW - Smart Sensors KW - CONSENS KW - Industrie 4.0 PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444357 AN - OPUS4-44435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bröcker, S. A1 - Klaer, R.-H. A1 - Kockmann, N. A1 - Maiwald, Michael T1 - Process Industry United in the Digital World - The current landscape of research for the digitalization of the process industry N2 - The Tutzing Symposium "100 % digital: survival strategies for the process industry" (see 4.1) in April 2018 was characterized by a great momentum which has been taken up and continued until today. The aim was to implement the ideas from the Tutzing Symposium in a coordinated and targeted manner. For this purpose, development needs as well as the numerous currently planned or already started research and development activities in the context of digitalisation were first compiled and analysed. This resulted in the current research landscape for digitalization in the process industry. It now enables to identify open topics and to translate them into research funding programs as well as to define new projects in the dialogue between users, suppliers and research, which are to be meaningfully interlinked and consolidated with existing projects. Due to the strong interest in digitalisation, activities are constantly being added, so that this paper can only provide a snapshot of the situation in the period 2019-2020. KW - Process Industry KW - Digitalisation KW - Tutzing Symposion KW - research landscape KW - Process Control PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512265 UR - https://processnet.org/en/TAKdigital.html SP - 1 EP - 15 AN - OPUS4-51226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Inês C.B. A1 - Al-Sabbagh, Dominik A1 - Meyer, Klas A1 - Maiwald, Michael A1 - Scholz, G. A1 - Emmerling, Franziska T1 - Insight into the Structure and Properties of Novel Imidazole-Based Salts of Salicylic Acid N2 - The preparation of new active pharmaceutical ingredient (API) multicomponent Crystal forms, especially co-crystals and salts, is being considered as a reliable strategy to improve API solubility and bioavailability. In this study, three novel imidazole-based salts of the poorly water-soluble salicylic acid (SA) are reported exhibiting a remarkable improvement in solubility and dissolution rate properties. All structures were solved by powder X-ray diffraction. Multiple complementary techniques were used to solve co-crystal/salt ambiguities: density functional Theory calculations, Raman and 1H/13C solid-state NMR spectroscopies. In all molecular salts, the Crystal packing interactions are based on a common charged assisted +N-H SA)...O-(co-former) hydrogen bond interaction. The presence of an extra methyl group in different positions of the co-former, induced different supramolecular arrangements, yielding salts with different physicochemical properties. All salts present much higher solubility and dissolution rate than pure SA. The most promising results were obtained for the salts with imidazole and 1-methylimidazole co-formers. KW - Salicylic acid KW - Imidazole KW - Salts KW - Powder X-ray diffraction KW - SsNMR KW - DFT PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502825 DO - https://doi.org/10.3390/molecules24224144 VL - 24 IS - 22 SP - 4144 PB - MDPI AN - OPUS4-50282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Liehr, Sascha A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Müller, S. A1 - Maiwald, Michael A1 - Kowarik, Stefan T1 - Artificial neural networks for quantitative online NMR spectroscopy N2 - Industry 4.0 is all about interconnectivity, sensor-enhanced process control, and data-driven systems. Process analytical technology (PAT) such as online nuclear magnetic resonance (NMR) spectroscopy is gaining in importance, as it increasingly contributes to automation and digitalization in production. In many cases up to now, however, a classical evaluation of process data and their transformation into knowledge is not possible or not economical due to the insufficiently large datasets available. When developing an automated method applicable in process control, sometimes only the basic data of a limited number of batch tests from typical product and process development campaigns are available. However, these datasets are not large enough for training machine-supported procedures. In this work, to overcome this limitation, a new procedure was developed, which allows physically motivated multiplication of the available reference data in order to obtain a sufficiently large dataset for training machine learning algorithms. The underlying example chemical synthesis was measured and analyzed with both application-relevant low-field NMR and high-field NMR spectroscopy as reference method. Artificial neural networks (ANNs) have the potential to infer valuable process information already from relatively limited input data. However, in order to predict the concentration at complex conditions (many reactants and wide concentration ranges), larger ANNs and, therefore, a larger Training dataset are required. We demonstrate that a moderately complex problem with four reactants can be addressed using ANNs in combination with the presented PAT method (low-field NMR) and with the proposed approach to generate meaningful training data. KW - Online NMR spectroscopy KW - Real-time process monitoring KW - Artificial neural networks KW - Automation KW - Process industry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507508 DO - https://doi.org/10.1007/s00216-020-02687-5 SN - 1618-2642 VL - 412 IS - 18 SP - 4447 EP - 4459 PB - Springer CY - Berlin AN - OPUS4-50750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible automation with compact NMR spectroscopy for continuous production of pharmaceuticals N2 - Modular plants using intensified continuous processes represent an appealing concept for the production of pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes; besides, it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and is based on a compact nuclear magnetic resonance (NMR) spectrometer. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including robust evaluation of sensor data. Beyond monitoring the product quality, online NMR data was used in a new iterative optimization approach to maximize the plant profit and served as a reliable reference for the calibration of a near-infrared (NIR) spectrometer. The overall approach was demonstrated on a commercial-scale pilot plant using a metal-organic reaction with pharmaceutical relevance. KW - NMR Spectroscopy KW - NIR Spectroscopy KW - Real-time process monitoring KW - Real-time quality control KW - Continuous processes KW - CONSENS KW - Data Fusion PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-480623 DO - https://doi.org/10.1007/s00216-019-01752-y SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 14 SP - 3037 EP - 3046 PB - Springer Nature CY - Heidelberg AN - OPUS4-48062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eifert, T. A1 - Eisen, K. A1 - Maiwald, Michael A1 - Herwig, C. T1 - Current and future requirements to industrial analytical infrastructure—part 2: smart sensors N2 - Complex processes meet and need Industry 4.0 capabilities. Shorter product cycles, flexible production needs, and direct assessment of product quality attributes and raw material attributes call for an increased need of new process analytical technologies (PAT) concepts. While individual PAT tools may be available since decades, we need holistic concepts to fulfill above industrial needs. In this series of two contributions, we want to present a combined view on the future of PAT (process analytical technology), which is projected in smart labs (Part 1) and smart sensors (Part 2). Part 2 of this feature article series describes the future functionality as well as the ingredients of a smart sensor aiming to eventually fuel full PAT functionality. The smart sensor consists of (i) chemical and process information in the physical twin by smart field devices, by measuring multiple components, and is fully connected in the IIoT 4.0 environment. In addition, (ii) it includes process intelligence in the digital twin, as to being able to generate knowledge from multi-sensor and multi-dimensional data. The cyber-physical system (CPS) combines both elements mentioned above and allows the smart sensor to be self-calibrating and self-optimizing. It maintains its operation autonomously. Furthermore, it allows—as central PAT enabler—a flexible but also target-oriented predictive control strategy and efficient process development and can compensate variations of the process and raw material attributes. Future cyber-physical production systems—like smart sensors—consist of the fusion of two main pillars, the physical and the digital twins. We discuss the individual elements of both pillars, such as connectivity, and chemical analytics on the one hand as well as hybrid models and knowledge workflows on the other. Finally, we discuss its integration needs in a CPS in order to allow is versatile deployment in efficient process development and advanced optimum predictive process control. KW - Smart sensors KW - Industry 4.0 KW - Digital twins KW - Process intelligence KW - Process analytical technology KW - Physical twin KW - Cyber-physical system PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503980 DO - https://doi.org/10.1007/s00216-020-02421-1 SN - 1618-2642 VL - 412 IS - 9 SP - 2037 EP - 2045 PB - Springer CY - Berlin Heidelberg AN - OPUS4-50398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisen, K A1 - Eifert, T A1 - Herwig, C A1 - Maiwald, Michael T1 - Current and future requirements to industrial analytical infrastructure—part 1: process analytical laboratories N2 - The competitiveness of the chemical and pharmaceutical industry is based on ensuring the required product quality while making optimum use of plants, raw materials, and energy. In this context, effective process control using reliable chemical process analytics secures global competitiveness. The setup of those control strategies often originate in process development but need to be transferable along the whole product life cycle. In this series of two contributions, we want to present a combined view on the future of PAT (process analytical technology), which is projected in smart labs (part 1) and smart sensors (part 2). In laboratories and pilot plants, offline chemical analytical methods are frequently used, where inline methods are also used in production. Here, a transferability from process development to the process in operation would be desirable. This can be obtained by establishing PAT methods for production already during process development or scale-up. However, the current PAT (Bakeev 2005, Org Process Res 19:3–62; Simon et al. 2015, Org Process Res Dev 19:3–62) must become more flexible and smarter. This can be achieved by introducing digitalization-based knowledge management, so that knowledge from product development enables and accelerates the integration of PAT. Conversely, knowledge from the production process will also contribute to product and process development. This contribution describes the future role of the laboratory and develops requirements therefrom. In part 2, we examine the future functionality as well as the ingredients of a smart sensor aiming to eventually fuel full PAT functionality—also within process development or scale-up facilities (Eifert et al. 2020, Anal Bioanal Chem). KW - Smart test laboratories KW - Laboratory 4.0 KW - Sustainable Production KW - Industry 4.0 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504020 DO - https://doi.org/10.1007/s00216-020-02420-2 SN - 1618-2642 VL - 412 IS - 9 SP - 2027 EP - 2035 PB - Springer CY - Berlin Heidelberg AN - OPUS4-50402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Integrated and Networked Systems and Processes—A Perspective for Digital Transformation in Thermal Process Engineering N2 - Separation technology as a sub-discipline of thermal process engineering is one of the most critical steps in the production of chemicals, essential for the quality of intermediate and end products. The discipline comprises the construction of facilities that convert raw materials into value-added products along the value chain. Conversions typically take place in repeated reaction and separation steps—either in batch or continuous processes. The end products are the result of several production and separation steps that are not only sequentially linked, but also include the treatment of unused raw materials, by-products and wastes. Production processes in the process industry are particularly susceptible to fluctuations in raw materials and other influences affecting product quality. This is a challenge, despite increasing fluctuations, to deliver targeted quality and simultaneously meet the increasing dynamics of the market, at least for high value fine chemicals. In order to survive successfully in a changed environment, chemical companies must tread new paths. This includes the potential of digital technologies. The full integration and intelligent networking of systems and processes is progressing hesitantly. This contribution aims to encourage a more holistic approach to the digitalization in thermal process engineering by introduction of integrated and networked systems and processes. KW - Smarter Sensor KW - Digitalisation KW - Digital transformation KW - Process Industry KW - Thermal Process Engineering KW - Digital Twins PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504964 DO - https://doi.org/10.3390/chemengineering4010015 SN - 2305-7084 VL - 4 IS - 15 SP - 1 EP - 9 PB - MDPI CY - Basel AN - OPUS4-50496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balderas-Xicohtencatl, R. A1 - Villajos Collado, José Antonio A1 - Casabán, J. A1 - Wong, D. A1 - Maiwald, Michael A1 - Hirscher, M. T1 - ZIF‑8 Pellets as a Robust Material for Hydrogen Cryo-Adsorption Tanks N2 - Cryoadsorption on the inner surface of porous materials is a promising solution for safe, fast, and reversible hydrogen storage. Within the class of highly porous metal−organic frameworks, zeolitic imidazolate frameworks (ZIFs) show high thermal, chemical, and mechanical stability. In this study, we selected ZIF-8 synthesized mechanochemically by twin-screw extrusion as powder and pellets. The hydrogen storage capacity at 77 K and up to 100 bar has been analyzed in two laboratories applying three different measurement setups showing a high reproducibility. Pelletizing ZIF-8 increases the packing density close to the corresponding value for a single crystal without loss of porosity, resulting in an improved volumetric hydrogen storage capacity close to the upper limit for a single crystal. The high volumetric uptake combined with a low and constant heat of adsorption provides ca. 31 g of usable hydrogen per liter of pellet assuming a temperature−pressure swing adsorption process between 77 K − 100 bar and 117 K − 5 bar. Cycling experiments do not indicate any degradation in storage capacity. The excellent stability during preparation, handling, and operation of ZIF-8 pellets demonstrates its potential as a robust adsorbent material for technical application in pilot- and full-scale adsorption vessel prototypes. KW - Hydrogen adsorption storage KW - Metal−organic frameworks KW - ZIF-8 KW - Cryoadsorption KW - Hydrogen Storage KW - MefHySto PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569473 DO - https://doi.org/10.1021/acsaem.2c03719 SN - 2574-0962 SP - 1 EP - 8 PB - ACS Publications CY - Washington DC AN - OPUS4-56947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Calibration-Free Chemical Process and Quality Control Units as Enablers for Modular Production N2 - Modular chemical production is a tangible translation of the digital transformation of the process industry for specialty chemicals. In particular, it enables the speeding-up of process development and thus a quicker time to market by flexibly connecting and orchestrating standardised physical modules and bringing them to life (i.e., parameterising them) with digitally accumulated process knowledge. We focus on the specific challenges of chemical process and quality control, which in its current form is not well suited for modular production and provide possible approaches and examples of the change towards direct analytical methods, analytical model transfer or machine-supported processes. KW - Modular Production KW - Chemical Process Control KW - Process Analytical Technology KW - Digital Transformation KW - Industry 4.0 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517264 DO - https://doi.org/10.1002/cite.202000150 SN - 1522-2640 VL - 93 IS - 1-2 SP - 62 EP - 70 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Metrologie für fortschrittliche Wasserstoffspeicherlösungen – Das EU-Projekt MefHySto T1 - Metrology for advanced hydrogen storage solutions – The EU project MefHySto N2 - Das europäische Projekt MefHySto befasst sich mit dem Bedarf an großmaßstäblichen Energiespeichern, die für eine Umstellung der Energieversorgung auf erneuerbare Energien erforderlich sind. Eine solche Speicherung ist entscheidend, um Energie zu Spitzenzeiten zu liefern, wenn die erneuerbaren Energiequellen schwanken. Eine mögliche Lösung für die Energiespeicherung ist der großtechnische Einsatz von Wasserstoff. Die messtechnische Rückführbarkeit in der Energieinfrastruktur für die Wasserstoffspeicherung ist dann von entscheidender Bedeutung und eine bessere Kenntnis der chemischen und physikalischen Eigenschaften von Wasserstoff sowie rückführbare Messungen und validierte Techniken unverzichtbar. N2 - The European project MefHySto addresses the need of large-scale energy storage, which is required for a shift to renewable energy supply. Such storage is mandatory to supply energy at peak times when renewable sources fluctuate. A possible solution for energy storage is large-scale use of hydrogen. Metrological traceability in the energy infrastructure for hydrogen storage is then crucial and a better knowledge of the chemical and physical properties of hydrogen as well as traceable measurements and validated techniques are indispensable. KW - Wasserstoff KW - Wasserstoffspeicher KW - Infrastruktur KW - Metrologie KW - PEM-Wasserelektrolyse KW - Rückverstromung KW - Lastwechsel KW - Wasserstoff-Qualität PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556451 UR - https://gwf-gas.de/forschung-entwicklung/metrologie-fuer-fortschrittliche-wasserstoffspeicherloesungen-das-eu-projekt-mefhysto/ SN - 2366-9594 VL - 163 IS - 9 SP - 38 EP - 45 PB - Vulkan Verlag CY - Essen AN - OPUS4-55645 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Meyer, Klas A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions towards variable temperature shielding for compact NMR instruments N2 - The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature. KW - Benchtop NMR KW - Continuous Processes KW - Inline Analytics KW - Model Predictive Control KW - Process Analytical Tecnology KW - Temperature Control PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579219 DO - https://doi.org/10.1002/mrc.5379 SN - 1097-458X SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-57921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottu Mukkula, A. R. A1 - Kern, Simon A1 - Salge, M. A1 - Holtkamp, M. A1 - Guhl, Svetlana A1 - Fleischer, C. A1 - Meyer, Klas A1 - Remelhe, M. A1 - Maiwald, Michael A1 - Engell, S. T1 - An Application of Modifier Adaptation with Quadratic Approximation on a Pilot Scale Plant in Industrial Environment N2 - The goal of this work is to identify the optimal operating input for a lithiation reaction that is performed in a highly innovative pilot scale continuous flow chemical plant in an industrial environment, taking into account the process and safety constraints. The main challenge is to identify the optimum operation in the absence of information about the reaction mechanism and the reaction kinetics. We employ an iterative real-time optimization scheme called modifier adaptation with quadratic approximation (MAWQA) to identify the plant optimum in the presence of plant-model mismatch and measurement noise. A novel NMR PAT-sensor is used to measure the concentration of the reactants and of the product at the reactor outlet. The experiment results demonstrate the capabilities of the iterative optimization using the MAWQA algorithm in driving a complex real plant to an economically optimal operating point in the presence of plant-model mismatch and of process and measurement uncertainties. KW - Process Analytical Technology KW - Online NMR Spectroscopy KW - Process Industry KW - Iterative real-time optimization KW - Modifier adaptation KW - Plant-model mismatch KW - Reactor control KW - CONSENS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524531 DO - https://doi.org/10.1016/j.ifacol.2020.12.685 SN - 1522-2640 VL - 53 IS - 2 SP - 11773 EP - 11779 PB - Elsevier CY - Amsterdam AN - OPUS4-52453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Paul, Andrea A1 - Ruiken, J.-P. A1 - Westad, Frank A1 - Illner, M. A1 - Müller, D. A1 - Esche, E. A1 - Repke, J.-U. A1 - Maiwald, Michael T1 - Online Spectroscopy in Microemulsions – A Process Analytical Approach for a Hydroformylation Mini-plant N2 - Within the Collaborative Research Center InPROMPT a novel process concept for the hydroformylation of long-chained olefins is studied in a mini-plant, using a rhodium complex as catalyst in the presence of syngas. Recently, the hydroformylation in micro¬emulsions, which allows for the efficient recycling of the expensive rhodium catalyst, was found to be feasible. However, the high sensitivity of this multi-phase system with regard to changes in temperature and composition demands a continuous observation of the reaction to achieve a reliable and economic plant operation. For that purpose, we tested the potential of both online NMR and Raman spectroscopy for process control. The lab-scale experiments were supported by off-line GC-analysis as a reference method. A fiber optic coupled probe of a process Raman spectrometer was directly integrated into the reactor. 25 mixtures with varying concentrations of olefin (1-dodecene), product (n-tridecanal), water, n-dodecane, and technical surfactant (Marlipal 24/70) were prepared according to a D-optimal design. Online NMR spectroscopy was implemented by using a flow probe equipped with 1/16” PFA tubing serving as a flow cell. This was hyphenated to the reactor within a thermostated bypass to maintain process conditions in the transfer lines. Partial least squares regression (PLSR) models were established based on the initial spectra after activation of the reaction with syngas for the prediction of unknown concentrations of 1-dodecene and n-tridecanal over the course of the reaction in the lab-scale system. The obtained Raman spectra do not only contain information on the chemical composition but are further affected by the emulsion properties of the mixtures, which depend on the phase state and the type of micelles. Based on the spectral signature of both Raman and NMR spectra, it could be deduced that especially in reaction mixtures with high 1-dodecene content the formation of isomers as a competitive reaction was dominating. Similar trends were also observed during some of the process runs in the mini-plant. The multivariate calibration allowed for the estimation of reactants and products of the hydroformylation reaction in both laboratory setup and mini-plant. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Microemulsions KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Online Raman Spectroscopy PY - 2017 SP - 64 EP - 64 CY - Frankfurt a. M. AN - OPUS4-40228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Wander, Lukas A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Design and Validation of a Compact NMR Analyser N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. If these are not available, there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Unionʼs Research Project CONSENS (Integrated Control and Sensing) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Prozessanalytik KW - Reaction Monitoring KW - Online NMR Spectrsocopy KW - Process Analytical Technology KW - Industrie 4.0 KW - EuroPACT PY - 2017 SP - 72 EP - 73 CY - Frankfurt a. M. AN - OPUS4-40229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -