TY - JOUR A1 - Hesse, Almut A1 - Weller, Michael G. T1 - Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids JF - Journal of Amino Acids N2 - Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. KW - Protein analysis KW - Proteomics KW - Peptides KW - Metrology KW - Certified reference materials KW - Amino acid analysis KW - Hydrolysis KW - Microwave KW - Tyrosine KW - Phenylalanine KW - Tryptophan PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370215 DO - https://doi.org/10.1155/2016/7374316 SN - 2090-0112 SN - 2090-0104 VL - 2016 SP - Article 7374316, 1 EP - 8 PB - Hindawi CY - Cairo, London, New York AN - OPUS4-37021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hesse, Almut A1 - Biyikal, Mustafa A1 - Rurack, Knut A1 - Weller, Michael G. T1 - Development of highly sensitive and selective antibodies for the detection of the explosive pentaerythritol tetranitrate (PETN) by bioisosteric replacement JF - Journal of Molecular Recognition N2 - An improved antibody against the explosive pentaerythritol tetranitrate (PETN) was developed. The immunogen was designed by the concept of bioisosteric replacement, which led to an excellent polyclonal antibody with extreme selectivity and immunoassays of very good sensitivity. Compounds such as nitroglycerine, 2,4,6-trinitrotoluene, 1,3,5-trinitrobenzene, hexogen (RDX), 2,4,6-trinitroaniline, 1,3-dinitrobenzene, octogen (HMX), triacetone triperoxide (TATP), ammonium nitrate, 2,4,6-trinitrophenol and nitrobenzene were tested for potential cross-reactivity. The detection limit of a competitive enzyme-linked immunosorbent assay (ELISA) was determined to be around 0.5 µg/L. The dynamic range of the assay was found to be between 1 µg/L and 1000 µg/L, covering a concentration range of three decades. This work shows the successful application of the bioisosteric concept in immunochemistry by exchange of a nitroester to a carbonate diester. The antiserum might be used for the development of quick tests, biosensors, microtitration plate immunoassays, microarrays and other analytical methods for the highly sensitive detection of PETN, an explosive frequently used by terrorists, exploiting the extreme difficulty of its detection. KW - bioisosteric replacement KW - immunoassay KW - antibody KW - explosives KW - hapten KW - Semtex KW - ELISA KW - security KW - terrorism PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/jmr.2511/abstract DO - https://doi.org/10.1002/jmr.2511 SN - 1099-1352 VL - 29 SP - 88 EP - 94 PB - John Wiley & Sons, Ltd. CY - New York, USA AN - OPUS4-35827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -