TY - JOUR A1 - Matzen, Melissa A1 - Kandola, B. A1 - Huth, Christian A1 - Schartel, Bernhard T1 - Influence of flame retardants on the melt dripping behaviour of thermoplastic polymers N2 - Melt flow and dripping of the pyrolysing polymer melt can be both a benefit and a detriment during a fire. In several small-scale fire tests addressing the ignition of a defined specimen with a small ignition source, well-adjusted melt flow and dripping are usually beneficial to pass the test. The presence of flame retardants often changes the melt viscosity crucially. The influence of certain flame retardants on the dripping behaviour of four commercial polymers, poly(butylene terephthalate) (PBT), polypropylene (PP), polypropylene modified with ethylene-propylene rubber (PP-EP) and polyamide 6 (PA 6), is analysed based on an experimental monitoring of the mass loss due to melt dripping, drop size and drop temperature as a function of the furnace temperature applied to a rod-shaped specimen. Investigating the thermal transition (DSC), thermal and thermo-oxidative decomposition, as well as the viscosity of the polymer and collected drops completes the investigation. Different mechanisms of the flame retardants are associated with their influence on the dripping behaviour in the UL 94 test. Reduction in decomposition temperature and changed viscosity play a major role. A flow limit in flame-retarded PBT, enhanced decomposition of flame-retarded PP and PP-EP and the promotion of dripping in PA 6 are the salient features discussed. KW - Fire retardant KW - Viscosity KW - Melt dripping KW - Reaction-to-small-flame KW - UL 94 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-338941 DO - https://doi.org/10.3390/ma8095267 SN - 1996-1944 VL - 8 IS - 9 SP - 5621 EP - 5646 PB - MDPI CY - Basel AN - OPUS4-33894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matzen, Melissa A1 - Marti, J. M. A1 - Onate, E. A1 - Idelsohn, S. A1 - Schartel, Bernhard T1 - Particle finite element modelling and advanced experiments on dripping V-0 polypropylene N2 - Melt flow and dripping of polymeric materials can be both beneficial and detrimental during fire. It reduces flame spread and result in extinction, as mass and heat are removed from the actual pyrolysis zone. In contrast, melt flow and dripping can provide an additional ignition source, additional process of flame spread and has the potential to start a pool fire. In the vertical UL 94 test, a well adjusted dripping behaviour of flame retarded polypropylene (PP-FR) resulted in a non-flaming dripping V-0 classification. For the polymer samples and their drops collected in UL 94, the decomposition and viscosity was investigated. Particle finite element method (PFEM) was successfully used to simulate the material behaviour in the UL 94 test and increased the understanding of the complex behaviour of polymeric materials during fire. T2 - Fire and Materials, 15th International Conference CY - San Francisco, CA, USA DA - 06.02.2017 KW - V0 dripping KW - Melt flow KW - Flammability KW - Flame retardant KW - Radical generator KW - Dripping agent KW - Polypropylene KW - Particle Finite Element Modelling PY - 2017 SP - 57 EP - 62 PB - Interscience Communication CY - Bromley, UK AN - OPUS4-39443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matzen, Melissa T1 - Advanced Experiments and Particle Finite Element Modelling on Dripping V-0 Polypropylene N2 - Melt flow and dripping of polymeric materials can be both beneficial and detrimental during fire. In the vertical UL 94 test, a well adjusted dripping behaviour of flame retarded polypropylene (PP-FR) resulted in a non-flaming dripping V-0 classification. Melt flow and dripping reduce flame spread and even result in extinction, as mass and heat are removed from the actual pyrolysis zone. For the polymer samples and their drops collected in UL 94, the decomposition and viscosity was investigated. Particle finite element method (PFEM) was successfully used to simulate the material behaviour in the UL 94 test. The competition between gasification, combustion and melt dripping is evaluated. T2 - Fire and Materials 2017, 15th International Conference CY - San Francisco, CA, USA DA - 06.02.2017 KW - Particle finite element method KW - Flammability KW - UL 94 V0 dripping KW - Radical generator KW - Polypropylene PY - 2017 AN - OPUS4-39444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matzen, Melissa T1 - Controlled dripping of flame retarded thermoplastics N2 - Dripping and melt flow of the pyrolysing polymer melt can be both a benefit and a detriment during a fire. Well-adjusted melt flow and dripping are regularly beneficial to pass small-scale fire tests. Flame retardants often significantly change the melt viscosity of polymeric materials. The influence of certain flame retardants on the dripping behaviour of four commercial polymers is analysed based on experimental monitoring of the mass loss due to dripping, drop size and drop temperature as a function of the furnace temperature applied to a rod-shaped specimen. Investigating the thermal transition, thermal and thermo-oxidative decomposition, as well as the viscosity of the polymer and collected drops accomplish the work and connects dripping and melt flow with physical and chemical processes. Various flame retardant mechanisms affect the dripping behaviour in the UL 94 test. A changed viscosity and reduction in decomposition temperature also play a major role. T2 - 4th International Symposium on Flame-Retardant Materials & Technologies, ISFRMT 2016 CY - Changchun, China DA - 15.06.2016 KW - Dripping KW - Fire testing KW - Flame retardancy KW - Thermoplastics PY - 2016 AN - OPUS4-36868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -