TY - JOUR A1 - Mehri Sofiani, F. A1 - Tacq, J. A1 - Elahi, S.A. A1 - Chaudhuri, Somsubhro A1 - De Waele, W. T1 - A hybrid probabilistic-deterministic framework for prediction of characteristic size of corrosion pits in low-carbon steel following long-term seawater exposure N2 - A hybrid deterministic-probabilistic framework is presented that combines in-situ measurements and numerical analysis to predict the characteristic size of corrosion pits over extended periods of exposure to seawater. A probabilistic model, informed by corrosion current density and temperature data, applies a sampling method to a range of overpotential values to reflect the surface deterioration in terms of pitting. The model is calibrated and validated with pit size data obtained from corroded coupons. Results reveal a positively skewed truncated lognormal distribution of pit depths which implies a higher prevalence of smaller pit depths, corroborated both experimentally and numerically. KW - Pitting corrosion KW - Offshore structures KW - Probabilistic analysis KW - Potentiodynamic polarisation PY - 2024 DO - https://doi.org/10.1016/j.corsci.2024.112039 VL - 232 SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-60693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mehri Sofiani, F A1 - Chaudhuri, Somsubhro A1 - Elahi, S.A. A1 - Hectors, K. A1 - De Waele, W. T1 - Quantitative Analysis of the Correlation between Geometric Parameters of Pits and Stress Concentration Factors for a Plate Subject to Uniaxial Tensile Stress N2 - The offshore environment is inherently corrosive. Consequently, pits may nucleate on exposed steel surfaces. Corrosion pits can be a source of crack initiation when the structure is subject to fatigue loading. The criticality of a corrosion pit with respect to the structural integrity depends on its shape and size and can be quantified using a stress concentration factor (𝐾𝑑). In this work, a parametric 3D finite element model is developed to perform stress analysis of a pitted plate subjected to uniaxial tensile stress. The model is used for an extensive parameter study in which 𝐾𝑑 is determined for various pit configurations. It is demonstrated that each one of the geometrical parameters holds a substantial influence on the location of the Most Critical Region (MCR). It is shown that 𝐾𝑑 increases as the pit gets narrower. Pits with an elliptical mouth yield higher 𝐾𝑑 values when the angle between the load direction and the pit mouth major axis increases. Moreover, 𝐾𝑑 increases with the increase in the localized thickness loss which is more pronounced for relatively wider pits. Finally, a regression model is presented for estimating 𝐾𝑑 based on the geometric parameters of a pit. KW - FEM KW - Corrosion KW - SCF KW - Pitting corrosion PY - 2023 DO - https://doi.org/10.1016/j.tafmec.2023.104081 SN - 0167-8442 VL - 127 SP - 1 EP - 27 PB - Elsevier Ltd. AN - OPUS4-58284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -