TY - CONF A1 - Klinge, A. A1 - Roswag-Klinge, E. A1 - Ziegert, C. A1 - Fontana, Patrick A1 - Richter, Matthias A1 - Hoppe, Johannes ED - Habert, G. ED - Schlueter, A. T1 - Naturally ventilated earth timber constructions N2 - Earth, timber, fibre boards and insulation materials based on wooden and other natural fibres offer a variety of properties beneficial for eco innovative constructions that are able to improve the energy and resource efficiency of buildings. Due to their porosity, natural building materials are vapour active and are able to buffer moisture. In combination with highly insulated and airtight but vapour permeable building envelopes, modern earth-timber constructions provide stable indoor humidity levels and can therefore be naturally ventilated while achieving highest energy efficiency standards. Experimental evidence suggests that monitored pilot buildings in Berlin do show healthy indoor air humidity levels (around 50%) in wintertime, while mechanically ventilated buildings demonstrate significantly lower values (around 25%), which have to be considered as uncomfortable and unhealthy. The application of building materials being poor in chemical emissions, particularly volatile organic compounds (VOC) and radon, improves the indoor air quality further, so that intermittent ventilation twice a day will be sufficient to provide healthy indoor air quality. The air quality in critical rooms (e.g. small bedrooms), demonstrating a smaller air volume, should be monitored if appropriate ratios of room size to occupancy level cannot be realised. Through night time ventilation in summer, vapour active earth-timber constructions provide evaporative cooling (humidity adsorption at night time and desorption during the day). As a result, indoor temperatures of earth-timber buildings range around 8 °C below the outside temperature peak, when an appropriate glazing ratio is reflected. The EU funded research project H-house is investigating various construction materials regarding water vapour adsorption as well as emission and absorption of harmful substances. Based on this investigation new wall constructions are designed to provide a healthier indoor environment. T2 - Sustainable Built Environment (SBE) Regional Conference - Expanding Boundaries: Systems Thinking for the Built Environment CY - Zurich, Switzerland DA - 15.06.2016 KW - Building materials KW - Climate control through building elements KW - Hygroscopic earthen and wooden materials KW - Natural ventilation KW - Airtight building KW - Low emissions PY - 2016 SN - 978-3-7281-3774-6 U6 - https://doi.org/10.3218/3774-6 SP - 674 EP - 681 PB - vdf Hochschulverlag und der ETH Zürich CY - Zürich AN - OPUS4-37201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klinge, A. A1 - Roswag-Klinge, E. A1 - Fontana, Patrick A1 - Hoppe, Johannes A1 - Richter, Matthias A1 - Sjöström, C. T1 - Reduktion von Lüftungstechnik durch den Einsatz klimasteuernder Naturbaustoffe - Ergebnisse aus dem EU Forschungsvorhaben H-House und der Baupraxis T1 - Reducing the need for mechanical ventilation through the use of climate-responsive natural building materials - Results from the EU research project H-House and building practice N2 - Die größten Ressourcenverbraucher unserer Zeit sind die Gebäude oder Behausungen des Menschen sowohl in der Phase der Errichtung als auch im Betrieb. Der Gebäudesektor und damit auch die Architektur verbrauchen in Deutschland ca. 50 % der fossilen Energieressourcen und verursachen ca. 60 % des gesamten Müllaufkommens mit dem zugehörigen Bedarf an Ressourcen in der Errichtung. Öl, Stahl und Beton haben uns Glauben gemacht die natürlichen Begebenheiten bei der Gestaltung von Gebäuden wenig beachten zu müssen. Immer neue Techniken zum Betrieb und zur Klimatisierung von Gebäuden waren die Zukunft. Der Klimawandel und die Ressourcenknappheit sind Aufforderungen zur Veränderung. Das Voranschreiten der Reform des Bauwesens hat somit zentrale Bedeutung zur Erreichung der Nachhaltigkeitsziele und um unsere Gesellschaft zukunftsfähig zu machen. Klimaangepasste Architekturkonzepte und die Verwendung von klimaaktiven Naturbaustoffen werden einen wesentlichen Beitrag zum Ressourcenschutz erbringen. N2 - More resources are consumed for the construction and use of buildings and dwellings than in any other industry. The building sector, and by extension architecture, is responsible for consuming around 50 % of fossil fuels in Germany and produces around 60 % of the entire volume of waste together with the resources used for the construction of buildings. Oil, steel and concrete has led us to believe that we can overcome the laws of nature in the design of our buildings, and for years we have devised ever new technologies for controlling building climate and operating our buildings. But the onset of climate change and the continuing depletion of resources signals a need for Change. To achieve our declared sustainability goals, and to better equip society for the future, it is vital that we effect reforms in the building sector. Climate-adaptive architectural concepts and the use of climateresponsive natural building materials can potentially make a major contribution to conserving resources. T2 - Lehm 2016 - 7. Internationale Fachtagung für Lehmbau - 7th International Conference on Building with Earth CY - Weimar, Germany DA - 12.11.2016 KW - Baustoffe KW - Hygroskopische Lehm- und Holzbaustoffe KW - Natürliche Belüftung KW - Luftdichte Gebäudehülle KW - Schadstoffemission von Baustoffen KW - Building materials KW - Hygroscopic earthen and wooden building materials KW - Natural ventilation KW - Air-tight building envelope KW - Emission of pollutants from building materials PY - 2016 N1 - Volltext (PDF) in deutsch und englisch - Full text (PDF) in German and English SP - 1 EP - 15 PB - Eigenverlag Dachverband Lehm e. V. CY - Weimar AN - OPUS4-38997 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klinge, A. A1 - Roswag, E. A1 - Fontana, Patrick A1 - Richter, Matthias A1 - Hoppe, Johannes A1 - Sjöström, C. T1 - Hygroscopic natural materials versus mechanical ventilation N2 - Multi residential buildings, developed as highly energy-efficient and airtight are nowadays often fitted with mechanical Ventilation Systems as a way to overcome shortcomings and even defects tinked to indoor climate. The presented study investigates the potential of low-emitting. natural building materials with hygroscopic properties to contribute to a healthy and comfortable indoor environment, while reducing the need for mechanical Ventilation. A selection of natural building materials suitable for application as internal partition walls has been investigated with regards to their water vapour adsorption capacity. Special emphasis was placed on the investigation of modified earth plasters as well as wood-based materials, used as wall lining to provide increased adsorption capacities. In addition, tests on materials emissions (formaldehyde, VOCs, SVOCs and radon) as well as adsorption tests of airborne pollutants have been conducted in specially-designed fest chambers. All tests were performed at either the material or the component tevel. Overall results to date suggest that natural materials contribute to an improved indoor environment quality through an increased moisture-buffering capacity, low emissions and the potential to adsorb airborne pollutants, therefore reducing the need for mechanical Ventilation. T2 - Terra Lyon 2016 - XIIth World Congress on Earthen Architecture CY - Lyon, France DA - 11.07.2016 KW - Hygroscopic earth and wooden materials KW - Low emissions PY - 2016 SN - 979-10-96446-11-7 SP - 218 EP - 221 PB - Editions CRAterre CY - Villefontaine AN - OPUS4-44856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Jann, Oliver A1 - Juritsch, Elevtheria A1 - Klinge, A. A1 - Roswag, E. A1 - Fontana, Patrick A1 - Miccoli, Lorenzo T1 - Indoor air emission tests of natural materials N2 - Emissions of building materials might have negative impact on human health and well-being. In the EU-funded research project H-House more than 30 natural materials (earthen dry boards and plasters, bio-based insulation materials made of wood, flax, reed, straw, etc.) used for renovation and refurbishment were tested regarding emissions of VOC, formaldehyde and radon. Different to ordinary emission tests on single materials this study focuses on the emissions from complete wall assemblies. Therefore, specially designed test chambers were used allowing the compounds to release only from the surface of the material facing indoors. The testing parameters were chosen in order to simulate model room conditions. The emission results were finally evaluated using the AgBB evaluation scheme, a procedure currently applied for the approval of flooring materials in Germany. T2 - 1st ICBBM - International conference on bio-based building materials CY - Clermont-Ferrand, France DA - 22.06.2015 KW - Emission testing KW - Natural materials KW - VOC KW - Formaldehyde KW - Radon PY - 2015 SN - 978-2-35158-154-4 SP - 641 EP - 643 AN - OPUS4-33609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -