TY - CONF A1 - Richter, Matthias A1 - Jann, Oliver T1 - Determination of radon exhalation rates from construction materials using VOC emission test chambers T2 - IAQ 2013 - Environmental health in low energy buildings (Proceedings) T2 - IAQ 2013 - Environmental health in low energy buildings CY - Vancouver, British Columbia, Canada DA - 2013-10-15 KW - Radon exhalation KW - Radon measurement KW - Construction material KW - Emission test chamber KW - Indoor air quality PY - 2013 SN - 2166-4870 SP - 508 EP - 512 AN - OPUS4-29407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Matthias A1 - Jann, Oliver A1 - Kemski, J. A1 - Schneider, Uwe A1 - Krocker, Christian A1 - Hoffmann, B. T1 - Determination of radon exhalation from construction materials using VOC emission test chambers JF - Indoor air N2 - The inhalation of 222Rn (radon) decay products is one of the most important reasons for lung cancer after smoking. Stony building materials are an important source of indoor radon. This article describes the determination of the exhalation rate of stony construction materials by the use of commercially available measuring devices in combination with VOC emission test chambers. Five materials – two types of clay brick, clinker brick, light-weight concrete brick, and honeycomb brick – generally used for wall constructions were used for the experiments. Their contribution to real room concentrations was estimated by applying room model parameters given in ISO 16000-9, RP 112, and AgBB. This knowledge can be relevant, if for instance indoor radon concentration is limited by law. The test set-up used here is well suited for application in test laboratories dealing with VOC emission testing. KW - Radon exhalation KW - Radon measurement KW - Building material KW - Emission test chamber KW - Indoor air quality KW - Real room radon concentrations PY - 2013 DO - https://doi.org/10.1111/ina.12031 SN - 0905-6947 SN - 1600-0668 VL - 23 IS - 5 SP - 397 EP - 405 PB - Danish Techn. Pr. CY - Copenhagen AN - OPUS4-29408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Wilke, Olaf A1 - Jann, Oliver T1 - Use of emission test chambers for the determination of chemical emissions from construction materials T2 - 1st International conference on the chemistry of construction materials (Proceedings) T2 - 1st International conference on the chemistry of construction materials CY - Berlin, Germany DA - 2013-10-07 KW - VOC KW - Emission from materials KW - Construction materials KW - Emission test chamber PY - 2013 SN - 978-3-936028-75-1 N1 - Serientitel: GDCh-Monographien – Series title: GDCh-Monographien VL - 46 SP - 259 EP - 262 AN - OPUS4-29480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Jann, Oliver A1 - Kemski, J. A1 - Klingel, R. A1 - Schneider, Uwe A1 - Krocker, Christian T1 - Investigations on radon exhalation of different building materials T2 - Indoor Air 2011, 12th International conference on indoor air quality and climate (Proceedings) N2 - The inhalation of 222Rn (radon) is one of the most important reasons for lung cancer, after smoking. Usually, the geological subsoil and the building ground are the dominant sources for enhanced indoor radon levels. Additionally, building materials can increase indoor radon concentrations when these materials contain higher contents of 226Ra (radium), especially in combination with low air exchange rates. For a realistic estimation of indoor radon concentrations, it is helpful to carry out measurements of radon exhalation rates from relevant materials using emission test chambers. In Germany, it is aspired to limit the total indoor radon concentration to 100 Bq/m3, whereby building materials should contribute at most 20 Bq/m3. Within a project financed by the German Institute for Construction Technology (DIBt), a practical oriented measurement procedure of the radon exhalation of building materials in accordance to ISO 16000-9 was developed to have a means for the assessment of these materials with respect to their indoor use. Test chambers with different volumes were used. The tested materials were mainly used for wall constructions (e.g., bricks, light-weight concrete) and have known specific radium activities and radon exhalation rates. T2 - Indoor Air 2011, 12th International conference on indoor air quality and climate CY - Austin, TX, USA DA - 05.06.2011 KW - Radon exhalation KW - Building material KW - Emission test chamber KW - Indoor air PY - 2011 IS - Paper 768 SP - 1 EP - 2 AN - OPUS4-24155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hofmann, Michael A1 - Richter, Matthias A1 - Jann, Oliver T1 - Robustness validation of a test procedure for the determination of the radon-222 exhalation rate from construction products in VOC emission test chambers JF - Applied radiation and isotopes N2 - This study investigated the adaptation of the state-of-the-art test procedure for the determination of emissions of volatile organic compounds (VOC) from materials into indoor air to test for the radon exhalation from stony construction products. A complete robustness validation including all relevant parameters showed that the procedure can be well applied by testing institutes already holding available the required VOC testing infrastructure that solely needs to be complemented by calibrated commercial radon measurement instrumentation. When measurements of the radon exhalation from construction materials become mandatory by law, test capacity can easily be applied. This work can serve as a recommendation for the European standardisation that still is on hold in this point. KW - Radon exhalation KW - Construction products KW - Emission test chamber KW - Robustness validation KW - Standardisation PY - 2020 DO - https://doi.org/10.1016/j.apradiso.2020.109372 SN - 0969-8043 VL - 166 IS - 109372 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-51145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mull, Birte A1 - Sauerwald, T. A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Brödner, Doris A1 - Schultealbert, C. T1 - Development of a reproducibly emitting reference material for volatile organic compounds T2 - Proceedings Indoor Air Conference 2016 N2 - The aim of this study is the development of a reproducibly emitting reference material for volatile organic compounds (VOC). The first part of the work was carried out with styrene, for which supporting materials were successfully selected, doped and analyzed in test chambers. T2 - Indoor Air 2016 The 14th international conference of Indoor Air Quality and Climate CY - Ghent, Belgium DA - 03.07.2016 KW - Quality control KW - Emission test chamber KW - Indoor air KW - Quality assurance PY - 2016 SN - 978-0-9846855-5-4 AN - OPUS4-36849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Schulz, Christian A1 - Richter, Matthias T1 - Test chamber measurements for the robustness validation of the test method for the determination of VOC-emissions from construction products into indoor air T2 - Healthy Buildings 2012 - 10th International conference (Proceedings) T2 - Healthy Buildings 2012 - 10th International conference CY - Brisbane, Australia DA - 2012-07-08 KW - VOC KW - Emission studies KW - Product safety KW - Emission test chamber PY - 2012 SN - 978-1-921897-40-5 SP - 1 EP - 2 (1D.2) AN - OPUS4-27560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nohr, Michael A1 - Horn, Wolfgang A1 - Jann, Oliver A1 - Richter, Matthias A1 - Lorenz, W. T1 - Development of a multi-VOC reference material for quality assurance in materials emission testing JF - Analytical and bioanalytical chemistry N2 - Emission test chamber measurement is necessary to proof building materials as sources of volatile organic compounds (VOCs). The results of such measurements are used to evaluate materials and label them according to their potential to emit harmful substances, polluting indoor air. If only labelled materials were installed indoors, this would improve indoor air quality and prevent negative impacts on human health. Because of the complex testing procedure, reference materials for the quality assurance are mandatory. Currently, there is a lack of such materials because most building products show a broad variation of emissions even within one batch. A previous study indicates lacquers, mixed with volatile organic pollutants, as reproducible emission source for a wide range of substances. In the present study, the curing of the lacquer-VOC mixture inside micro-chambers was optimised. Therefore, the humidity and the chamber flow were varied. Typical indoor air pollutants with a wide range of volatilities, for example, styrene, n-hexadecane, dimethyl and dibutyl phthalate were selected. It turned out that, under optimised curing parameters inside the micro-chamber, their emission can be reproduced with variations of less than 10 %. With this, a next important step towards a reference material for emission testing was achieved. KW - Reference material KW - Emission KW - Emission test chamber KW - Micro-chamber KW - VOC PY - 2015 DO - https://doi.org/10.1007/s00216-014-8387-2 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 11 SP - 3231 EP - 3237 PB - Springer CY - Berlin AN - OPUS4-32404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mull, Birte A1 - Sauerwald, T. A1 - Schultealbert, C. A1 - Horn, Wolfgang A1 - Brödner, Doris A1 - Richter, Matthias T1 - Reproducibly emitting reference materials for volatile and semi-volatile organic compounds—using finite element modeling for emission predictions JF - Air Quality, Atmosphere and Health N2 - Recent research into emissions of (semi-)volatile organic compounds [(S)VOC] from solid materials has focused on the development of suitable reference materials for quality assurance/quality control of emission test chamber measurements, which fulfill requirements such as homogenous and reproducible (S)VOC release. The approach of this study was to find a method for preparation of a material with predictable (S)VOC emission rates. AVOC (styrene) and an SVOC (2,6-diisopropylnaphthalene, DIPN), loaded into either vacuum grease or a 1:1 mixture of paraffin/squalane, have been tested. For the prediction of the emission rates, a model using the finite element method (FEM) was created to simulate the (S)VOC emission profiles. Theoretical and experimental results obtained in a Micro-Chamber/Thermal Extractor (μ-CTE™) and in 24 L emission test chamber measurements were in good agreement. Further properties were investigated concerning the material applicability, such as shelf life and inter-laboratory comparability. The maximum relative standard deviation in the inter-laboratory study was found to be 20%. KW - Emitting reference material KW - Emission test chamber KW - Micro-chamber KW - FEM model PY - 2017 DO - https://doi.org/10.1007/s11869-017-0508-6 SN - 1873-9318 SN - 1873-9326 VL - 10 IS - 10 SP - 1237 EP - 1246 PB - Springer Science+Business Media B.V. AN - OPUS4-41951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Horn, Wolfgang A1 - Richter, Matthias A1 - Nohr, M. A1 - Wilke, Olaf A1 - Jann, Oliver T1 - Application of a novel reference material in an international round robin test on material emissions testing JF - Indoor Air N2 - Emission testing of products is currently a rapidly increasing field of measurement activity. Labelling procedures for construction products are based on such emission test chamber measurements and hence measurement performance should be verified. A suited procedure for this purpose is the testing of one unique homogenous material in different laboratories within a Round Robin Test (RRT). Therefore, it is useful to have a reference material which can be used within inter-laboratory studies or as part of the quality management system to ensure comparable results. Several approaches on the development of reproducibly emitting materials have been published. These have in common only to emit a single VOC – toluene. Two further research studies carried out by BAM aimed to develop reference material for emissions testing containing one or more VOC in a single material. The first approach was a doped lacquer with Volatile and Semi-Volatile Organic Compounds (VOC/SVOC) and the second was Thermoplastic Polyurethane (TPU) or a Squalane/Paraffin mixture. Results received with the lacquer based material were presented in more detail. KW - Emission test chamber KW - Reference material KW - Round robin test KW - VOC PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-419412 DO - https://doi.org/10.1111/ina.12421 SN - 1600-0668 SN - 0905-6947 VL - 28 IS - 1 SP - 181 EP - 187 PB - Wiley & Sons, Ltd. AN - OPUS4-41941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -