TY - JOUR A1 - Köppen, Robert A1 - Riedel, Juliane A1 - Proske, Matthias A1 - Drzymala, Sarah A1 - Rasenko, Tatjana A1 - Durmaz, V. A1 - Weber, M. A1 - Koch, Matthias T1 - Photochemical trans-/cis-isomerization and quantitation of zearalenone in edible oils N2 - The emphasis of the present work was to investigate the photochemical conversion of trans- to cis-zearalenone in edible oils under real-life conditions. For quantitation purposes a cis-zearalenone standard was synthesized and characterized for its identity and purity (≥95%) by 1H NMR, X-ray crystallography, HPLC fluorescence and mass spectrometric detection. In a sample survey of 12 edible oils (9 corn oils, 3 hempseed oils) from local supermarkets all corn oils contained trans-zearalenone (median 194 µg/kg), but no cis-zearalenone was detected. For alteration studies trans-zearalenone contaminated corn oils were exposed to sunlight over 4 and 30 weeks, revealing an obvious shift toward cis-zearalenone up to a cis/trans ratio of 9:1 by storage in colorless glass bottles. Irradiation experiments of trans-zearalenone in different organic solvents confirmed the preferred formation of cis-zearalenone possibly caused by entropic effects rather than by enthalpic entities as investigated by quantum chemical and classical force field simulations. KW - Fusarium mycotoxins KW - Food KW - Analysis KW - Occurrence PY - 2012 DO - https://doi.org/10.1021/jf3037775 SN - 0021-8561 SN - 1520-5118 VL - 60 IS - 47 SP - 11733 EP - 11740 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-27375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siegel, David A1 - Feist, M. A1 - Proske, Matthias A1 - Koch, Matthias A1 - Nehls, Irene T1 - Degradation of the alternaria mycotoxins alternariol, alternariol monomethyl ether, and altenuene upon bread baking N2 - The stability of the Alternaria mycotoxins alternariol, alternariol monomethyl ether, and altenuene upon bread baking was investigated by model experiments using a spiked wholemeal wheat flour matrix. For alternariol and alternariol monomethyl ether, but not for altenuene, degradation products, formed through a sequence of hydrolysis and decarboxylation, could be identified in pilot studies. The simultaneous quantification of alternariol, alternariol monomethyl ether, altenuene, and the degradation products was achieved by a newly developed high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) multimethod. The obtained quantitative data indicate that the Alternaria mycotoxins are barely degraded during wet baking, while significant degradation occurs upon dry baking, with the stability decreasing in the order alternariol monomethyl ether > alternariol > altenuene. The novel degradation products could be detected after the wet baking of flour spiked with alternariol and in a sample survey of 24 commercial cereal based baking products. KW - Alternariol monomethyl ether KW - Alternariol KW - Altenuene KW - Degradation KW - Baking KW - Bread KW - HPLC-MS/MS PY - 2010 DO - https://doi.org/10.1021/jf102156w SN - 0021-8561 SN - 1520-5118 VL - 58 IS - 17 SP - 9622 EP - 9630 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-21909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gärtner, Sonja A1 - Balski, Matthias A1 - Koch, Matthias A1 - Nehls, Irene T1 - Analysis and migration of phthalates in infant food packed in recycled paperboard N2 - The contamination of infant food with substances from its packaging due to migration processes is still a problem. Most recently, great attention was paid to the migration of epoxidized soybean oil (ESBO) and phthalates from twist-off closures into baby food packed in glass jars. Besides, packaging made of recycled fiber materials such as paper and paperboard were found to be the source of contaminants in dry and powdery foodstuffs such as sugar, rice, and maize flour. In this study 20 infant food samples packed in recycled paperboard containers were tested for phthalates and diisopropyl naphthalenes (DIPN), known incorporated substances in recycled paper. Furthermore, the barrier function of different secondary packaging materials (paper and aluminum-coated foil) was investigated. The highest contents of phthalates (mainly diisobutyl phthalate, DiBP) and DIPN in infant food samples were found for those foods packed in inner bags made of paper. Migration experiments were performed under authentic conditions to evaluate possible transfer mechanism (gas phase, direct contact) of phthalate esters into foodstuff. It is shown that paper does not provide an appropriate barrier against migration of semipolar compounds such as phthalates. The air space itself otherwise effectively prevents migration of the less volatile phthalates under the applied conditions. KW - Phthalates KW - Accelerated solvent extraction (ASE) KW - Infant food KW - Recycled paper KW - Migration KW - GC-MS PY - 2009 DO - https://doi.org/10.1021/jf902683m SN - 0021-8561 SN - 1520-5118 VL - 57 IS - 22 SP - 10675 EP - 10681 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-20472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, M.E.H. A1 - Steier, I. A1 - Köppen, Robert A1 - Proske, Matthias A1 - Korn, U. A1 - Koch, Matthias A1 - Siegel, David T1 - Cocultivation of phytopathogenic Fusarium and Alternaria strains affects fungal growth and mycotoxin production N2 - Aims: A laboratory study was conducted to evaluate the influence of cocultivation of toxigenic Fusarium (F.) and Alternaria (A.) fungi with respect to growth and mycotoxin production. Methods and Results: Fusarium culmorum Fc13, Fusarium graminearum Fg23 and two Alternaria tenuissima isolates (At18 and At220) were simultaneously or consecutively co-incubated on wheat kernels in an in vitro test system. Fungal biomass was quantified by determining ergosterol content. Three Fusarium toxins (DON, NIV and ZON) and three Alternaria toxins (AOH, AME and ALT) were analysed by a newly developed HPLC/MS/MS method. In simultaneous cocultures, the fungal biomass was enhanced up to 460% compared with individual cultures; Alternaria toxins were considerably depressed down to <5%. Combining At18 and At220 with Fg23 inhibited the toxin production of both fungal partners. In contrast, Fc13 increased its DON and ZON production in competitive interaction with both A. strains. Conclusions: The interfungal competitive effects aid the understanding of the processes of competition of both fungi in natural environments and the involvement of mycotoxins as antifungal factors. Significance and Impact of Study: Cocultivation significantly affects fungal growth and mycotoxin production of phytopathogenic Alternaria and Fusarium strains. The impact of mycotoxins on the interfungal competition is highlighted. KW - Alternaria KW - Cocultivation KW - Ergosterol KW - Fusarium KW - Interfungal competition KW - Multimycotoxin analysis PY - 2012 DO - https://doi.org/10.1111/j.1365-2672.2012.05388.x SN - 1364-5072 VL - 113 IS - 4 SP - 874 EP - 887 PB - Wiley-Blackwell CY - Malden, Mass., USA AN - OPUS4-26932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siegel, David A1 - Andrae, K. A1 - Proske, Matthias A1 - Kochan, Cindy A1 - Koch, Matthias A1 - Weber, M. A1 - Nehls, Irene T1 - Dynamic covalent hydrazine chemistry as a selective extraction and cleanup technique for the quantification of the Fusarium mycotoxin zearalenone in edible oils N2 - A novel, cost-efficient method for the analytical extraction of the Fusarium mycotoxin zearalenone (ZON) from edible oils by dynamic covalent hydrazine chemistry (DCHC) was developed and validated for its application with high performance liquid chromatography-fluorescence detection (HPLC-FLD). ZON is extracted from the edible oil by hydrazone formation on a polymer resin functionalised with hydrazine groups and subsequently released by hydrolysis. Specifity and precision of this approach are superior to liquid partitioning or gel permeation chromatography (GPC). DCHC also extracts zearalanone (ZAN) but not α-/β-zearalenol or -zearalanol. The hydrodynamic properties of ZON, which were estimated using molecular simulation data, indicate that the compound is unaffected by nanofiltration through the resin pores and thus selectively extracted. The method's levels of detection and quantification are 10 and 30 µg/kg, using 0.2 g of sample. Linearity is given in the range of 10-20,000 µg/kg, the average recovery being 89%. Bias and relative standard deviations do not exceed 7%. In a sample survey of 44 commercial edible oils based on various agricultural commodities (maize, olives, nuts, seeds, etc.) ZON was detected in four maize oil samples, the average content in the positive samples being 99 µg/kg. The HPLC-FLD results were confirmed by HPLC-tandem mass spectrometry and compared to those obtained by a liquid partitioning based sample preparation procedure. KW - Zearalenone KW - Extraction KW - Edible oil KW - Maize KW - Dynamic covalent hydrazine chemistry KW - Hydrazone KW - SPE KW - Hydrodynamic radius KW - HPLC-FLD PY - 2010 DO - https://doi.org/10.1016/j.chroma.2010.02.019 SN - 0021-9673 VL - 1217 IS - 15 SP - 2206 EP - 2215 PB - Elsevier CY - Amsterdam AN - OPUS4-21048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwake-Anduschus, C. A1 - Proske, Matthias A1 - Sciurba, E. A1 - Muenzing, K. A1 - Koch, Matthias A1 - Maul, Ronald T1 - Distribution of deoxynivalenol, zearalenone, and their respective modified analogues in milling fractions of naturally contaminated wheat grains N2 - Mycotoxins are among the most abundant contaminants in food and feed worldwide. Therefore, in the EU maximum levels are established, e.g. for the frequently occurring Fusarium toxins deoxynivalenol (DON) and zearalenone (ZEA). Additional to DON and ZEA, modified mycotoxins are present in naturally contaminated grain products contributing significantly to the exposure of humans and animals with mycotoxins. Up to now data on the spatial distribution of many (masked) mycotoxins in the kernels of wheat are missing. The aim of the present study was to investigate the amounts of DON and ZEA as well as their most abundant derivatives DON-3-glucoside (DON-3G), 3- and 15-acetyl-DON, ZEA-14- and 16-glucoside and ZEA-14-sulphate (ZEA-14S) in mill fractions of naturally contaminated wheat batches using HPLC-MS/MS. The investigated distribution pattern in ten milling fractions is comparable among the three investigated different wheat batches. Interestingly, DON and DON-3G were found to be present to similar amounts in all fractions. In bran, the levels were only slightly higher than in the endosperm. By contrast, for ZEA and ZEA-14S a significantly higher amount of toxin is located in the fibre-rich fractions. The relative mass proportion of DON-3G comprises for only between 2.9 and 11.2% of the free DON, while the relative mass proportion of ZEA-14S is estimated to even exceed the amount of free ZEA in certain fractions. Acetylated DON derivatives and ZEA-glucosides were only detected in low amounts. The experimental results show that a significant reduction of the ZEA and ZEA-14S level in wheat flour is feasible by applying milling technology strategies. However, the almost evenly distribution of DON and DON-3G in all fractions does not allow for the technological removal of relevant toxin amounts. Furthermore, the relative share of masked forms was higher for ZEA derivatives than for the DON conjugates in the investigated wheat lots. KW - Mass spectrometry KW - Fusarium mycotoxins KW - Masked mycotoxin KW - Flour extraction KW - Bran PY - 2015 DO - https://doi.org/10.3920/WMJ2014.1818 SN - 1875-0710 SN - 1875-0796 VL - 8 IS - 4 SP - 433 EP - 443 PB - Wageningen Academic Publishers CY - Wageningen AN - OPUS4-33833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matiushkina, Anna A1 - Abram, Sarah-Luise A1 - Tavernaro, Isabella A1 - Richstein, R. A1 - Reithofer, M. R. A1 - Andresen, Elina A1 - Michaelis, Matthias A1 - Koch, Matthias A1 - Resch-Genger, Ute T1 - Quantifying Citrate Surface Ligands on Iron Oxide Nanoparticles with TGA, CHN Analysis, NMR, and RP-HPLC with UV Detection N2 - Although citrate is frequently used as a surface ligand for nanomaterials (NMs) such as metal, metal oxide, and lanthanide-based NMs in hydrophilic environments due to its biocompatibility and simple replacement by other more strongly binding ligands in postsynthetic surface modification reactions, its quantification on NM surfaces has rarely been addressed. Here, we present a multimethod approach for citrate quantification on iron oxide nanoparticles (IONPs) broadly applied in the life and material sciences. Methods explored include thermogravimetric (TGA) and elemental (CHN) analysis, providing citrate-nonspecific information on the IONP coating, simple photometry, and citrate-selective reversed-phase high-performance liquid chromatography (RP-HPLC) with absorption (UV) detection and quantitative nuclear magnetic resonance spectroscopy (qNMR). Challenges originating from the strongly absorbing magnetic NM and paramagnetic iron species interfering with optical and NMR Methods were overcome by suitable sample preparation workflows. Our multimethod approach to citrate quantification highlights the advantages of combining specific and unspecific methods for characterizing NM Surface chemistry and method cross-validation. It also demonstrates that chemically nonselective measurements can favor an overestimation of the amount of a specific surface ligand by signal contributions from molecules remaining on the NM surface, e.g., from particle synthesis, such as initially employed ligands and/or surfactants. Our results emphasize the potential of underexplored selective RPHPLC for quantifying ligands on NMs, which does not require a multistep sample preparation workflow such as qNMR for many NMs and provides a higher sensitivity. These findings can pave the road to future applications of versatile HPLC methods in NM characterization. KW - Advanced material KW - Functional group KW - Iron oxide KW - Ligand KW - Nano KW - Particle KW - Quantification KW - Surface analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648632 DO - https://doi.org/10.1021/acs.analchem.5c03024 SN - 0003-2700 VL - 97 IS - 36 SP - 19627 EP - 19634 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-64863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghiringhelli, Luca M. A1 - Baldauf, Carsten A1 - Bereau, Tristan A1 - Brockhauser, Sandor A1 - Carbogno, Christian A1 - Chamanara, Javad A1 - Cozzini, Stefano A1 - Curtarolo, Stefano A1 - Draxl, Claudia A1 - Dwaraknath, Shyam A1 - Fekete, Ádám A1 - Kermode, James A1 - Koch, Christoph T. A1 - Kühbach, Markus A1 - Ladines, Alvin Noe A1 - Lambrix, Patrick A1 - Himmer, Maja-Olivia A1 - Levchenko, Sergey V. A1 - Oliveira, Micael A1 - Michalchuk, Adam A1 - Miller, Ronald E. A1 - Onat, Berk A1 - Pavone, Pasquale A1 - Pizzi, Giovanni A1 - Regler, Benjamin A1 - Rignanese, Gian-Marco A1 - Schaarschmidt, Jörg A1 - Scheidgen, Markus A1 - Schneidewind, Astrid A1 - Sheveleva, Tatyana A1 - Su, Chuanxun A1 - Usvyat, Denis A1 - Valsson, Omar A1 - Wöll, Christof A1 - Scheffler, Matthias T1 - Shared metadata for data-centric materials science N2 - The expansive production of data in materials science, their widespread sharing and repurposing requires educated support and stewardship. In order to ensure that this need helps rather than hinders scientific work, the implementation of the FAIR-data principles (Findable, Accessible, Interoperable, and Reusable) must not be too narrow. Besides, the wider materials-science community ought to agree on the strategies to tackle the challenges that are specific to its data, both from computations and experiments. In this paper, we present the result of the discussions held at the workshop on “Shared Metadata and Data Formats for Big-Data Driven Materials Science”. We start from an operative definition of metadata, and the features that a FAIR-compliant metadata schema should have. We will mainly focus on computational materials-science data and propose a constructive approach for the FAIRification of the (meta)data related to ground-state and excited-states calculations, potential-energy sampling, and generalized workflows. Finally, challenges with the FAIRification of experimental (meta)data and materials-science ontologies are presented together with an outlook of how to meet them. KW - Library and Information Sciences KW - Statistics, Probability and Uncertainty KW - Computer Science Applications KW - Education KW - Information Systems KW - Statistics and Probability PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584846 DO - https://doi.org/10.1038/s41597-023-02501-8 VL - 10 IS - 1 SP - 1 EP - 18 PB - Springer Science and Business Media LLC AN - OPUS4-58484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, X.Q. A1 - Li, H.M. A1 - Jiao, H. A1 - Guo, Z.H. A1 - Zhang, Q.H. A1 - Kneeteman, L.E. A1 - Lewin, M. A1 - Pires do Rego, E.C. A1 - Leal, R.V. A1 - Violante, F.G.M. A1 - Riedel, Juliane A1 - Koch, Matthias T1 - CCQM Key Comparison track A CCQM-K168: Non-polar analytes in high carbohydrate food matrix: trans-zearalenone in maize powder N2 - Demonstrating competency and equivalence for the measurement capacity of contaminants and nutrients in primary foodstuffs is a priority of the OAWG 10-year strategy for Track A core comparisons. Such measurements have posed significant challenges for reference material producers and calibration service providers. This key comparison (KC), under the topic of “non- polar analyte in high carbohydrate food matrix: trans-Zearalenone (trans-ZEN) in maize powder” , was a sector of the model system selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to demonstrate the Calibration and Measurement Capabilities (CMCs) of national metrology institutes (NMIs) and designated institutes (DIs). 17 NMIs and DIs participated in the Track A KC CCQM- 168 “non-polar analyte in high carbohydrate food matrix: trans-ZEN in maize powder” . Participants were requested to evaluate the mass fraction (μg/kg) of trans-ZEN in maize powder material. Methods like liquid-liquid extraction and SPE were applied in the pre-treatment, and HPLC-MS/MS and HPLC-FLD were used for detection by the participants. The mass fractions for trans-ZEN were in the range of (91.8 to 169) μg/kg with standard uncertainties of (1.5 to 24.7) μg/kg, and corresponding relative standard uncertainties from 1.5% to 14.6%. Two labs, INTI and BAM were excluded from the KCRV evaluation. INTI result was identified as an outlier and confirmed their method had insufficient specificity. For BAM the calibration approach they used does not meet the CIPM traceability requirements. The other 15 labs included in the calculation of the consensus KCRV all agreed within their standard uncertainties. Hierarchical Bayes was used as estimators in calculating KCRV and standard uncertainty. Successful participation in CCQM-K168 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 1 μg/kg to 1000 μg/kg in a high carbohydrate food matrix. KW - Metrology KW - Quality Assurance KW - Mycotoxin Analysis KW - Sustainable Food Safety PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08021 VL - 60 IS - 1a SP - 08021 AN - OPUS4-59059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Bresch, Harald A1 - Kipphardt, Heinrich A1 - Resch-Genger, Ute A1 - Koch, Matthias A1 - Rosner, M. T1 - Trends in selected fields of reference material production N2 - For more than 110 years, BAM has been producing reference materials for a wide range of application fields. With the development of new analytical methods and new applications as well as continuously emerging more stringent requirements of laboratory accreditation with regard to quality control and metrological traceability, the demand and requirements for reference materials are increasing. This trend article gives an overview of general developments in the field of reference materials as well as developments in selected fields of application in which BAM is active. This includes inorganic and metal analysis, gas analysis, food and consumer products, and geological samples. In addition to these more traditional fields of application, developments in the areas of optical spectroscopy, particulary fluorescence methods, and nanomaterials are considered. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Reference material KW - ISO REMCO KW - Gas analysis KW - Food KW - Nanomaterials KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548407 DO - https://doi.org/10.1007/s00216-022-03996-7 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4281 EP - 4289 PB - Springer CY - Berlin AN - OPUS4-54840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -