TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Zaghdoudi, Maha A1 - Wolff, Dietmar T1 - A closer look at elastomer O-ring seals - Interesting aspects of these typical machine elements and ways to evaluate their performance - N2 - For many sealing applications rubber O-rings are applied due to their special properties and easy use. In many applications as e.g. in aviation, traffic or process technology the material can be exposed to a variety of conditions during operation as e.g. low temperatures, elevated temperatures and different media. Therefore, it is important to know the material behaviour and the seal performance under those conditions. Additionally ageing of seals is an important factor which has an influence on the long term reliability. In this contribution we would like to discuss different aspects affecting the seal performance, lifetime estimation and address open questions which should be addressed to come to a deeper understanding of these seals commonly understood as typical machine elements. Results of running investigations at the Bundesanstalt für Materialforschung und -prüfung (BAM), Division 3.4 “Safety of Storage Containers” are presented and discussed. T2 - Technomer 2019 CY - Chemnitz, Germany DA - 07.11.2019 KW - Seal KW - Machine element KW - Rubber PY - 2019 AN - OPUS4-49981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - A numerical approach to correlate compression stress relaxation and compression set of elastomer O-rings with tightness N2 - The excellent mechanical properties of elastomer seals at a wide range of temperatures as well as their high versatility and recovery potential under several load conditions make these materials well suitable for the application in containers designed for transport and disposal of negligible heat generating radioactive waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered which prohibit an avoidable cask handling. An extensive knowledge of the change of the elastomer properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the safe enclosure of the radioactive material for the required time are mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have already been made and are still ongoing to scientifically support this task. Among other representative types of elastomers, specimen made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the with respect to application most important of their complex mechanical properties. Exemplary results of these investigations were used to calibrate material models implemented in the commercial finite element software ABAQUS/Standard®. The finite element model already presented in previous works uses a sequential temperature displacement coupling. The calculated compression stress relaxation (CSR) and compression set (CS) values do satisfactorily match the experimental results. In many investigations performed at BAM both values (CSR and CS) were identified as key indicators of elastomer’s long-term performance. However, the possibility to correlate these equivalent indicators with performance values such as tightness and leakage rate, measurable in the mounted state, is an important goal of our future work. In the presented study the ABAQUS® feature of “pressure penetration” is introduced in the suggested finite element model for this purpose. It provides the possibility to simulate the penetration of a gas into a possible gap between flange and O-ring causing an opening of a leakage path. Three dimensional and axis-symmetric finite element models were generated to represent flat and grooved flanges of different dimensions. The sensitivity of the feature to several input parameters is investigated and the observed behavior of the O-ring is correlated with the results of performed leakage tests. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Elastomer KW - Tightness KW - Leakage KW - Compression set KW - Compression stress relaxation PY - 2021 SN - 978-0-7918-8535-2 U6 - https://doi.org/10.1115/PVP2021-61976 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, M. A1 - Kömmling, Anja A1 - Böhning, Martin A1 - Jaunich, Matthias T1 - Ageing of elastomers in air and in hydrogen environment: A comparative study N2 - EPDM, HNBR and FKM materials were exposed at 150 ◦C to air under atmospheric pressure and to hydrogen at 50 bar for different ageing times. All measurements after hydrogen exposure were conducted on samples in degassed condition to assess irreversible effects resulting from that exposure and to compare them to those after ageing in air. Density, hardness, tensile properties, compression set, and hydrogen permeability of all samples were analysed. In both ageing environments, HNBR exhibited the most significant changes of material properties. However, for both EPDM and HNBR, considerably less severe ageing effects were observed under hydrogen in comparison to ageing in air. On the other hand, FKM showed about the same low level of deterioration in both ageing environments but exhibited poor resistance against damage due to rapid gas decompression in hydrogen environment that can lead to seal failure. The obtained results may serve as a guidance toward a better understanding for design and utilisation of elastomeric materials in future hydrogen infrastructure components. KW - Rapid gas decompression KW - Condensed Matter Physics KW - Hydrogen KW - Sustainability and the Environment KW - Rubber sealing KW - Renewable Energy PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597417 SN - 0360-3199 VL - 63 SP - 207 EP - 216 PB - Elsevier B.V. AN - OPUS4-59741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Zaghdoudi, Maha T1 - Ageing under Hydrogen: effects on O-ring seals N2 - In this work we present results for three typical sealing materials (EPDM, HNBR, FKM) after up to 100 days ageing at high temperature under hydrogen. To allow for a better evaluation of the occurring changes the results are compared with effects of ageing in air on the material properties. Despite the common assumption that ageing under hydrogen atmosphere is expected to be less severe for the material in com-parison to air ageing, this is not seen for every material. T2 - Technomer 2023 CY - Chemnitz, Germany DA - 09.11.2023 KW - Hydrogen KW - Ageing KW - Seal KW - Compression set PY - 2023 AN - OPUS4-58818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Aktueller Stand des Forschungsprojekts LaMEP N2 - Ergebnispräsentation zum Forschungsprojekt "Langzeitverhalten von Metall- und Elastomerdichtungen sowie Moderator-materialien als sicherheitsrelevante Komponenten von TLB für radioaktive Stoffe“ (LaMEP). T2 - BGZ Fachworkshop Zwischenlagerung CY - Berlin, Germany DA - 22.10.2019 KW - Metalldichtung KW - Elastomerdichtung KW - Neutronen Abschirmmaterial KW - Alterung KW - Degradation PY - 2019 AN - OPUS4-49429 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Zaghdoudi, M. A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar ED - Altenbach, H. ED - Hitzler, L. ED - Johlitz, M. ED - Merkel, M. ED - Öchsner, A. T1 - Analysis of Heterogeneous Ageing of HNBR O-Rings N2 - Abstract Hydrogenated nitrile butadiene rubber (HNBR) elastomer was thermo-oxidatively aged at different temperatures up to 150 °C. Fourier transform infrared spectroscopy (FTIR), compression stress relaxation (CSR) and international rubber hardness degree (IRHD) microhardness were used to characterise the chemo-mechanical changes of HNBR O-rings during thermo-oxidative ageing. FTIR shows the development of carbonyl, methyl and ester groups but the nitrile content was not affected by ageing. The effect of sample geometry during CSR was investigated. CSR data were converted through integrated kinetic laws. The conversion has proven its sensibility to detect heterogeneous ageing. This was confirmed by the IRHD measure-ments across the section of O-rings. The influence of compression during ageing was assessed through IRHD measurements across the section of compressed and uncom-pressed aged O-rings. The DLO effect was more pronounced in compressed O-rings. By applying the model of Wise et al., theoretical IRHD and oxidation profiles were determined on the basis of IRHD experimental data of compressed O-rings. Good agreements between the experimental and the theoretical IRHD profiles in the core region were obtained. However, near the edge, the theoretical IRHD values were overestimated. KW - Ageing KW - Rubber seals KW - Stress relaxation KW - Modelling PY - 2024 SN - 978-3-031-49042-2 U6 - https://doi.org/10.1007/978-3-031-49043-9 SN - 1869-8433 SP - 331 EP - 348 PB - Springer Nature CY - Cham, Switzerland AN - OPUS4-59769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Pourmand, P. A1 - Wolff, Dietmar A1 - Hedenqvist, M. T1 - Analysis of O-ring seal failure under static conditions and determination of end-of-lifetime criterion N2 - Determining a suitable and reliable end-of-lifetime criterion for O-ring seals is an important issue for long-term seal applications. Therefore, seal failure of ethylene propylene diene rubber (EPDM) and hydrogenated nitrile butadiene rubber (HNBR) O-rings aged in the compressed state at 125 °C and at 150 °C for up to 1.5 years was analyzed and investigated under static conditions, using both non-lubricated and lubricated seals. Changes of the material properties were analyzed with dynamic-mechanical analysis and permeability experiments. Indenter modulus measurements were used to investigate DLO effects. It became clear that O-rings can remain leak-tight under static conditions even when material properties have already degraded considerably, especially when adhesion effects are encountered. As a feasible and reliable end-of-lifetime criterion for O-ring seals under static conditions should include a safety margin for slight dimensional changes, a modified leakage test involving a small and rapid partial decompression of the seal was introduced that enabled determining a more realistic but still conservative end-of-lifetime criterion for an EPDM seal. KW - EPDM KW - HNBR KW - Seal failure KW - Leak-tightness KW - DLO KW - Oxygen permability KW - DMA KW - Indenter modulus PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-486125 SN - 2073-4360 VL - 11 IS - 8 SP - 1251, 1 EP - 19 PB - MDPI CY - Basel, CH AN - OPUS4-48612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Brandt, Guido A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Coefficients of Friction in Dependence on Aging State of Elastomers – Experimental Identification and Numerical Simulation of the Experiment N2 - Elastomer seals are mounted as barrier seals in lid systems of containers designed for transport and disposal of negligible heat generating radioactive waste and as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). When the behavior of mounted seals under normal and hypothetical accident conditions of disposal and transport is to be simulated, a comprehensive knowledge of their complex mechanical properties at every state of aging is necessary. In previous works, BAM’s efforts in experimental investigations on specimen artificially aged at different temperatures and times and the implementation of the found results in finite element material models were presented. Additionally, our approaches to reproduce the aging process itself and to extrapolate the results of artificially accelerated aging to longer times were presented. Numerical simulations have shown that the behavior of the seal during mounting and one-sided pressurizing and the resulting performance values such as leakage rate strongly depend on the coefficient of friction (COF) between flange and seal. The friction coefficient, in turn, depends on the aging state of the elastomer material as several publications suggest (see below). Dynamic COF between an exemplary ethylene propylene diene rubber (EPDM) material and a stainless steel ball were determined by using a self-designed linear oscillation tribometer. Unaged and artificially aged EPDM specimen stored for 30 days and 100 days at a temperature of 150 °C were tested. A stainless steel ball (d=10 mm) is brought in contact with the specimen’s surface und loaded by normal forces of 2.5 N, 5 N, 10 N and 20 N. During a reciprocating movement of the EPDM sheet, the horizontal force/friction force is continuously measured, and the COF can be derived. It is well known that friction is a complex phenomenon especially in soft materials. It cannot be excluded that the measured friction force is influenced by additional force components, resulting from the ball’s grooving through the elastomer’s surface. This force depends on the penetration depth of the ball and on the resistance of the elastomer in its different states of aging. The latter results from microstructural changes i.e., chain scission and additional crosslinking that occur during aging which in turn influence the softening or hardening of the material. A finite element (FE) ABAQUS® model was developed to reproduce the measurement process. It should help to better understand the physical mechanisms and to quantify the percentage of measured forces resulting from real friction on the one hand and forces resulting from unintended side effects that could falsify the result on the other hand. The behavior of the elastomer in its different states of aging is reproduced by a FE material model already presented in previous works of BAM. T2 - ASME 2022 Pressure Vessels & Piping Conference (PVP2022) CY - Las Vegas, NV, USA DA - 17.02.2022 KW - Numerical Simulation KW - Radioactive Waste KW - Elastomers KW - Aging KW - Seal Behavior KW - Leakage Rate KW - Coefficient of Friction KW - Experiment PY - 2022 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-57093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Zaghdoudi, Maha T1 - Comparison of ageing behaviour of O-ring seals under hydrogen and air N2 - Elastomeric seals are essential components in the infrastructure which prevent leakage of gas and proper function of technical devices and are therefore highly safety relevant. For proper function a remaining resilience and tolerance to pressure changes is required. The ageing of elastomers is an undesirable but inevitable process leading to a limited lifetime of rubber products such as seals. Independent of the application, as e.g. automotive, piping or container applications, a long lifetime or at least a timely exchange of a seal before occurrence of critical failure is desired. Hydrogen is a key element for the energy turnaround and therefore the compatibility of seals with hydrogen is essential. In addition to the effect of hydrogen uptake and release, which might also cause destructive effects such as rapid gas decompression, ageing at high temperature under hydrogen atmosphere is of interest too. Most of the existing work is addressing the performance of new materials and comprises only very limited investigations concerning long-term use and the behaviour of aged materials in contact with hydrogen. As ageing can lead to substantial changes of material properties, it must be evaluated whether these changes are beneficial or deteriorating for the component function. In this work we present and compare results of the characterisation of three sealing materials (EPDM, HNBR, FKM) after ageing at high temperature under hydrogen and air. Despite the common assumption that ageing under hydrogen atmosphere should be less severe for the material in comparison to air ageing, this is not the case for every material. T2 - RubberCon 2023 CY - Edinburgh, Scotland DA - 09.05.2023 KW - Hydrogen KW - Ageing KW - Seal PY - 2023 AN - OPUS4-58178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Component and material investigations on metal seals for high level radioactive waste containers N2 - Long-term investigations performed at BAM look to extend the state of knowledge on safety-related components of interim storage containers. Metal seals act as the primary sealing barrier in the bolted double lid closure system of the containers. The behaviour of metal seals has been investigated for ageing times up to 8.5 years and for various temperatures. The main cause for reduction in useable resilience overtime was due to creep deformation of the outer jacket of the seal. KW - Metal seal KW - Radioactive waste containers KW - Creep KW - Long-term behaviour PY - 2018 SN - 1745-2058 SP - 32 EP - 34 PB - Nuclear Institute CY - London AN - OPUS4-48206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -