TY - CONF A1 - Jaunich, Matthias T1 - Overview of metal seal tests performed at BAM and implications for extended interim storage N2 - The investigation of the long-term performance of sealing systems employed in containers for radioactive waste and spent nuclear fuel is one research focus area for division 3.4 “Safety of Storage Containers” at the Bundesanstalt für Materialforschung und -prüfung. The behaviour of metallic seals, which are employed in interim storage casks for used fuel and high active waste, over time is of high importance for ensuring safe enclosure. Therefore, investigations on these systems were started at BAM to get a general understanding of the relevant processes. Our investigations comprise investigations on different parameters which influence the seal performance and the main part is focussed on the time and temperature dependent behaviour. In this contribution an overview of the performed tests and their respective results will be given. A focus will lie on a comparison between seals with large torus diameter in comparison to small diameters. Our aim is to understand the long-term behaviour of the sealing systems for evaluation of their performance during possible extended interim storage and subsequent transportation. T2 - 4th Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Online meeting DA - 03.06.2020 KW - Seal performance KW - Metal seal KW - Leakage rate PY - 2020 AN - OPUS4-50843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias T1 - Low temperature properties of rubber seals N2 - Understanding the failure mechanisms that lead to leakage of rubber seals at low temperatures is important. Rubber properties are highly temperature dependent. Changes in behaviour at low temperatures can result from the rubber-glass transition and for some rubbers by partial crystallisation. Experimental results on the low temperature behaviour of different rubber seals were discussed to help understand seal failure processes. T2 - Rubber in Engineering Group (RIEG) webinar an Elastomers at Low Temperatures CY - Online meeting DA - 11.09.2020 KW - Low temperature KW - Rubber seal KW - Compression set KW - Glass transition PY - 2020 UR - https://www.iom3.org/rubber-engineering-group/event/elastomers-low-temperatures AN - OPUS4-51306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Grelle, Tobias A1 - Wolff, Dietmar T1 - Low temperature performance of rubber seals - Influence of crystallite formation on seal performance N2 - Rubbers are widely used as sealing materials in various applications. In many fields the function of seal materials at low temperatures is necessary. Therefore, the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that rubbers possess strongly temperature dependent material properties. At low temperatures high changes in the material properties are observed which can be caused by the rubber-glass transition (abbr. glass transition) or for some rubbers also by partial crystallisation at lower temperatures. During continuous cooling the material changes during rubber-glass transition from rubber-like entropy-elastic behaviour to stiff energy-elastic behaviour. In case of (thermal-) crystallisation the formed crystallites act as additional (physical) crosslinks within the material but the molecules in the amorphous phase can still behave like a rubber. Hence, rubbers are normally used above rubber-glass transition and (thermal-) crystallization temperature but the minimum working temperature limit is heavily depending on the application conditions. Therefore, the lower operation temperature limit of rubber seals is under investigation. In the past we have investigated material properties and sealing behaviour of rubber seals at low temperatures. As the initial work was dedicated to purely static sealing conditions we started to investigate the effect of a small partial release of rubber seals at low temperatures to study the influence of dynamic events on leak tightness. In addition, other groups report on the influence of counterpart surface and adhesion. In this contribution we focus on the difference between purely amorphous elastomers and elastomers which become partially crystalline at low temperatures. The influence of partial crystallization on the low temperature performance of rubber seals is discussed. T2 - Fall Rubber Colloquium 2018 CY - Hannover, Germany DA - 06.11.2018 KW - Seal KW - Low temperature KW - Rubber KW - Partial crystalline PY - 2018 AN - OPUS4-46553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Horn, Jutta A1 - Völzke, Holger A1 - Wolff, Dietmar T1 - Long-Term Performance of Elastomer seals - From Aging Tests to Lifetime Estimations N2 - Elastomers show a high versatility which makes them ideal materials for sealing applications in various fields. Especially under changing application conditions the high recovery potential of this class of material is beneficial to compensate temperature or pressure fluctuation, and geometrical changes resulting from mechanical loads in e.g. accident conditions. Out of these reasons elastomers are also used in containers for low and intermediate level radioactive waste and for spent fuel transportation casks. In cask designed for low and intermediate level waste elastomer seals can act as primary seal responsible for the containment function whereas in spent fuel storage and transportation casks (dual purpose casks (DPC)) elastomer seals are used as auxiliary seals to allow leakage rate measurements of metal barrier seals. An inherent prerequisite for this kind of application is the long time-scale of operation without or with limited possibility of seal replacement. In Germany an interim storage license for DPC`s is typically issued for 40 years, a timeframe which might increase in future due to challenges of the final repository siting procedure. For low and intermediate level waste, also long time periods are required before final disposal can be achieved. Therefore, the performance of elastomer seals over extended time periods is, as for other applications, of high importance. A typical approach to ensure long-term functionality is to perform accelerated aging tests to calculate an estimated lifetime by assuming e.g. Arrhenius like equations for the time-temperature relationship. This approach requires a suitable end of life criterion considering the application of interest. This often can represent a challenge on its own. As BAM is involved in most of the cask licensing procedures and especially responsible for the evaluation of cask-related long-term safety issues we initiated several test programs for investigating the behavior of elastomer seals. Experiments concerning the low temperature performance down to -40°C and the influence of gamma irradiation have been started first. Currently the thermal aging behavior of elastomer seals, which is the topic of this contribution, is examined. For our aging investigations we use a broad approach to first determine the property changes in different elastomer materials due to thermo-oxidative aging at elevated temperatures and secondly we test how the typical methods of lifetime extrapolation can be applied to these results. This approach enables us to detect and exclude undesired side effects which very often influence lifetime estimations. In this contribution, our recent results are discussed. T2 - ASME Pressure Vessels and Piping Conference 2018 CY - Prague, Czech Republic DA - 15.07.2018 KW - Seal KW - Rubber KW - Degradation PY - 2018 AN - OPUS4-45923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Long-term evaluation of sealing systems for radioactive waste packages N2 - The investigation of the long-term performance of sealing systems employed in containers for radioactive waste and spent nuclear fuel is one research focus area for division 3.4 “Safety of Storage Containers” at the Bundesanstalt für Materialforschung und -prüfung (BAM). Our investigations comprise investigations on metallic and elastomeric seals and covers experimental investigations to get a database on the component/material behaviour, work on analytical descriptions and numerical analysis. Our aim is to understand the long-term behaviour of the sealing systems for evaluation of their performance during possible extended interim storage and subsequent transportation. T2 - 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 05.06.2019 KW - Seal performance KW - Rubber seal KW - Metallic seal KW - Ageing PY - 2019 AN - OPUS4-48224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Zencker, Uwe A1 - Wolff, Dietmar T1 - Investigations at BAM on Fuel Cladding Integrity and DPC Seal Performance N2 - The presentation provides an update on preliminary results from research projects in the area of long term performance of metal seals and fuel rod integrity as safety relevant components of spent fuel transport and storage casks for spent nuclear fuel. T2 - Extended Storage Collaboration Program (ESCP) winter meeting 2022 CY - Charlotte, NC, USA DA - 07.11.2022 KW - Metal seal KW - Fuel cladding KW - Ring compression test KW - Brittle failure PY - 2022 AN - OPUS4-56400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias T1 - Investigation of the low-temperature performance of rubber seals N2 - For many sealing applications rubbers are applied due to their special material properties and easy use. In many applications as e.g. in aviation, traffic or process technology the material can be exposed to low temperatures during operation. Therefore, it is important to know the material behaviour at those low temperatures to determine the temperature range that allows a safe operation of the seal. In this work, we focus on the behaviour of elastomer seals at low temperatures with regard to potential decrease of leak-tightness or catastrophic seal failure of O-ring rubber seals. This is required as material properties of rubbers are strongly temperature dependent but their temperature application range is not always clearly defined. Based on previous investigations which considered the physical material properties and the seal behaviour under purely static conditions we widen the focus on the sealing performance after a fast partial relief of compressed seals and additional materials. For the investigations, different typical rubber seal materials were used as e.g. fluorocarbon (FKM), ethylene propylene diene (EPDM) and hydrogenated acrylonitrile-butadiene (HNBR) rubber. The correlation of the physical material properties with seal performance is studied. This includes as well purely static sealing applications as the performance during/after fast partial relief of seals at low temperatures. T2 - Polymertec 2018 CY - Merseburg, Germany DA - 13.06.2018 KW - Seal KW - Low temperature KW - Leakage PY - 2018 AN - OPUS4-45214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Elastomer seals - overview and development N2 - The talk summarizes the current and future investigations of elastomer seal materials in division 3.4. T2 - IRSN-BAM Symposium Safety of Transport and Storage Packages CY - Online meeting DA - 19.11.2020 KW - Seal KW - Degradation KW - Ageing PY - 2020 AN - OPUS4-51751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias T1 - Dichtungsverhalten bei niedrigen Temperaturen - Untersuchung der unteren Temperatureinsatzgrenze N2 - Elastomere werden vielfach in Produkten eingesetzt, die bei verschiedenen Temperaturen verwendet werden. Dabei sind O-Ringe kostengünstige Dichtelemente, die allerdings für die Funktionsfähigkeit und Sicherheit eines Produkts entscheidend sind. Die untere Temperatureinsatzgrenze ist dabei durchaus relevant und aus wissenschaftlicher Sicht nicht allgemeingültig zu definieren, da diese einerseits durch die Änderungen der Materialeigenschaften im Zuge des Gummi-Glas-Übergangs definiert werden, die Temperaturlage dieses Übergangs jedoch sehr stark von den jeweiligen Einsatzbedingungen (z.B. Frequenz) abhängt. Dadurch ergeben sich große Unterschiede zwischen statischen und dynamischen Anwendungen. Verschiedene Untersuchungen sollen vorgestellt und interpretiert werden, um das Auditorium auf verschiedene Herausforderungen aufmerksam zu machen und Lösungsansätze vorzustellen... T2 - ISGATEC O-Ring Forum CY - Mannheim, Germany DA - 20.06.2018 KW - Dichtung KW - Glasübergang KW - O-Ring KW - Druckverformungsrest KW - Leckagerate PY - 2018 AN - OPUS4-45299 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias T1 - Dichtungsverhalten bei niedrigen Temperaturen - Untersuchung der unteren Temperatureinsatzgrenze von Elastomerdichtungen - N2 - Elastomere werden vielfach in Produkten eingesetzt, die bei verschiedenen Temperaturen verwendet werden. O-Ringe sind kostengünstige Dichtelemente, die allerdings für die Funktionsfähigkeit und Sicherheit eines Produkts entscheidend sein können. Die untere Temperatur-einsatzgrenze ist dabei relevant und aus wissenschaftlicher Sicht nicht allgemein gültig zu definieren, da diese einerseits durch die Änderungen der Materialeigenschaften im Zuge des Gummi-Glas-Übergangs definiert werden, die Temperaturlage dieses Übergangs jedoch sehr stark von den jeweiligen Einsatzbedingungen (z.B. Frequenz) abhängt. Dadurch ergeben sich große Unterschiede zwischen statischen und dynamischen Anwendungen. Verschieden Untersuchungen sollen vorgestellt und interpretiert werden, um das Auditorium auf verschiedene Herausforderungen aufmerksam zu machen und Lösungsansätze vorzustellen. T2 - ISGATEC Forum Werkstoffe 2019 CY - Mannheim, Germany DA - 03.12.2019 KW - Dichtung KW - O-Ring KW - Tiefe Temperaturen KW - Versagenstemperatur PY - 2019 AN - OPUS4-49983 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -