TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing of elastomeric seals for storage containers N2 - At BAM Federal Institute for Materials Research and Testing in Germany, it is our responsibility to audit the safety of casks designed for transport and/or storage of radioactive material. With regard to the requirements on long-term safety of the containers, it is necessary to evaluate the service lifetime of the elastomeric seals used in the containers. With ageing, the elastomers will gradually lose their elasticity and their ability for recovery, which might result in a leakage above the allowed level or in a release of radioactivity during an incident. It is important to know the rate of degradation and which property can be used as an practical and easily measurable end-of-lifetime criterion. For this reason, we devised ageing experiments on different kinds of elastomers, namely FKM, EPDM and HNBR. The former two are actually used in containers for radioactive wastes – either as auxiliary seal in casks containing high activity waste, or as main seal in casks for medium or low activity waste. The latter is an often used seal material that is tested for comparative reasons. In our ageing program, these three materials are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) in order to extrapolate the data to service temperature using a suitable model. They are examined at logarithmic time intervals of several days up to 5 years. The samples are aged in their undeformed O-ring state as well as compressed between flanges with a deformation corresponding to the actual compression during service. Thus we can compare the ageing between relaxed and stressed sample. Additionally, we are ageing samples in flanges that allow leakage rate measurements. Other measurements include monitoring of the recovery force of the seal and the compression set. Furthermore, the samples are examined by thermal and dynamic-mechanical analysis for detecting changes in the glass transition temperature due to crosslinking or chain scission in the material. Besides, hardness is measured as a practical macroscopic indicator. Until now, we have analyzed samples aged up to 100 days. At the highest ageing temperature of 150 °C, the compressed EPDM has already reached a compression set of 95 %, while HNBR and FKM have reached 80 % and 30 %, respectively. Furthermore, HNBR has reached a Shore D hardness of 85, which is an immense increase after the initial value of 80 Shore A. However, when looking at the cross-section of the sample, it was obvious that only a layer of about 1 mm thickness has become so hard, while the inner part remained rubbery. This shows that there has been intense crosslinking mostly near the surface of the HNBR which forms a kind of oxygen diffusion barrier, inhibiting the thermooxidation of the inner part of sample which can retain elastic properties. In EPDM, the oxygen permeability is much greater, which leads to a more homogeneous degradation across the whole sample and thus resulted in a higher compression set. The low compression set of FKM shows the outstanding high-temperature properties of this material. T2 - Annual Meeting on Nuclear Technology 2015 CY - Berlin, Germany DA - 2015-05-05 KW - Elastomer KW - Rubber KW - Aging KW - Lifetime KW - Seal KW - Cask KW - Compression PY - 2015 SN - 978-3-926956-98-9 SP - 1 EP - 10(?) PB - INFORUM-Verl. u. Verwaltungsges. AN - OPUS4-33782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Aging of elastomeric seals for storage casks N2 - Elastomeric seals are used in many containers, including casks for radioactive waste. However, like all polymers, elastomers are prone to aging, which leads to a loss of sealing force and the ability for recovery which can ultimately result in leakage. Therefore it is important to be able to define an end-of-lifetime criterion and to judge the lifetime of elastomeric seals. For this reason, we started an aging program on three kinds of rubbers (HNBR, EPDM, FKM), monitoring the change of properties at four different aging temperatures over extended periods up to five years. The measured data is used for lifetime prediction by applying a suitable model. T2 - WM2015 Conference CY - Phoenix, Arizona, USA DA - 15.03.2015 KW - Aging KW - Elastomer KW - Seal KW - Leakage KW - Compression PY - 2015 SN - 978-0-9828171-4-8 SP - 15080, 1 EP - 12 AN - OPUS4-33253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Weber, Mike A1 - Kömmling, Anja A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Performance of elastomer seals in transport and storage casks N2 - Elastomer seals are widely used as barrier seals in containers for low and intermediate level radioactive waste and for spent fuel transportation casks. In addition, they are also used for spent fuel storage and transportation casks (dual purpose casks (DPC)) as auxiliary seals to allow leakage rate measurements of metal barrier seals for demonstration of their proper assembling conditions. Depending on the area of use, the rubber materials have to demonstrate proper sealing performance with regard to mechanical, thermal, and environmental conditions as well as irradiation during the entire operation period. Concerning DPC, degradation effects should be limited in a way that, for example, effects from potentially released decomposition elements may not harm e.g. metal barrier seals. Leakage rate measurements should be possible also after long interim storage periods prior to subsequent transportation. Because of the complex requirements resulting from the various applications of containers for radioactive waste and spent nuclear fuel, BAM has initiated several test programmes for investigating the behaviour of elastomer seals. In this contribution the current status is described and first results are discussed. T2 - International conference on management of spent fuel from nuclear power reactors: An integrated approach to the back end of the fuel cycle CY - Vienna, Austria DA - 15.06.2015 KW - Ageing KW - Elastomer KW - Glass-rubber transition KW - Irradiation KW - Material model PY - 2015 SP - 1 EP - 8 AN - OPUS4-33553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing and lifetime prediction of O-ring seals made of HNBR, EPDM and FKM N2 - BAM is the federal institute for materials research and testing in Germany. One of our tasks is to evaluate the safety of casks designed for transport and/or storage of radioactive waste. As elastomeric seals are used in the containers as safety-relevant parts, it is our goal to be able to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. For this reason, an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) was started. Ageing was performed at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) for up to 2 years. For assessing properties related to the sealability, O-rings were aged in compression by 25 % (corresponding to the compression during service) between plates. For comparison, uncompressed O-rings were aged as well. The aged materials were characterized with conventional polymer analysis methods such as hardness and tensile tests, but also with more seal-specific methods such as compression stress relaxation (CSR, reflecting the loss of sealing force of a compressed seal over time), and compression set (CS, representing the recovery behaviour of a seal after release from compression). CS is chosen as the property for lifetime prediction as it is both sensitive to degradation and related to the seal performance. CS data is extrapolated to 60 °C, which yields lifetimes of approximately 5 years for HNBR and 64 years for EPDM for a criterion of 85 % CS respectively, and approx. 40 years for FKM for a criterion of 65 % CS (the highest value measured so far). T2 - 12. Kautschuk Herbst Kolloquium CY - Hanover, Germany DA - 22.11.2016 KW - Rubber KW - Compression set KW - Extrapolation KW - Degradation PY - 2016 SN - 9783981407648 VL - 2016 AN - OPUS4-38483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Revealing effects of chain scission during ageing of EPDM rubber using relaxation and recovery experiment N2 - Both chain scission and crosslinking reactions occur during ageing of EPDM rubber. However, with many conventional polymer analysis methods such as hardness and DMA, it is hardly possible to obtain information about the contribution of each reaction type to the measured data. For example, hardness and Tg both increase during ageing of EPDM, indicating crosslinking during ageing, but it is not clear whether this is partly counterbalanced by chain scission reactions which would lower hardness and Tg. An indication that chain scission reactions probably counteract the hardness or Tg increase by crosslinking is given by Compression Set (CS) measurements. CS exhibits a higher change than hardness or Tg, as CS increases additively through both chain scission and crosslinking reactions. In order to elucidate the share of chain scission reactions in the total degradation, a method testing relaxation and recovery behaviour using DMA equipment was applied. The method revealed the strong influence of chain scissions, leading to more pronounced relaxation and higher residual strain after compression. KW - Compression set KW - DMA KW - Nnetwork KW - Crosslinking PY - 2016 DO - https://doi.org/10.1016/j.polymertesting.2016.10.026 SN - 0142-9418 SN - 1873-2348 IS - 56 SP - 261 EP - 268 PB - Elsevier Ltd. AN - OPUS4-38012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Influence of Ageing on Sealability of HNBR, EPDM and FKM O-rings N2 - At BAM, which is the federal institute for materials research and testing in Germany, it is one of our tasks to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes assessment of elastomeric seals applied in the containers. Besides examining the low-temperature behaviour and irradiation effects of elastomeric seals, it is our goal to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. Therefore, we started an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) which are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) up to 1 year. In order to assess sealability, O-rings are aged in compression by 25 % (corresponding to the compression during service) between plates as well as in flanges that allow leakage rate measurements. For comparison, uncompressed O-rings are aged as well. Further methods characterising seal performance are compression stress relaxation (CSR) reflecting the loss of sealing force of a compressed seal over time, and compression set (CS) which represents the recovery behaviour of a seal after release from compression. Additionally, hardness is measured for information about the change of mechanical properties. The experimental results indicate that while hardness, CSR and CS show considerable degradation effects, the leakage rate stays constant or even decreases until shrinkage and the loss of resilience of the aged seal leads to the formation of a leakage path. This indicates that static leakage rate, which is the only available direct seal performance criterion, has only limited sensitivity for the degradation of the seal material. T2 - International Sealing Conference CY - Stuttgart, Germany DA - 12.10.2016 KW - Rubber KW - Seal KW - Degradation PY - 2016 SN - 978-3-8163-0674-9 VL - 2016 SP - 551 EP - 563 PB - VDMA AN - OPUS4-38014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Chatzigiannakis, E. A1 - Beckmann, Jörg A1 - Wachtendorf, Volker A1 - von der Ehe, Kerstin A1 - Braun, Ulrike A1 - Jaunich, Matthias A1 - Schade, U. A1 - Wolff, Dietmar T1 - Discoloration Effects of High-Dose gamma-Irradiation and Long-Term Thermal Aging of (U) HMW-PE N2 - Two polyethylene types with ultra-high (UHMWPE) and high molecular weight (HMW-PE) used as neutron radiation shielding materials in casks for radioactive waste were irradiated with doses up to 600 kGy using a 60Co gammasource. Subsequently, thermal aging at 125∘C was applied for up to one year. Degradation effects in the materials were characterized using colorimetry, UV-Visspectroscopy, IR spectroscopy, and DSC. Both materials exhibited a yellowing upon irradiation.The discoloration of UHMW-PE disappeared again after thermal aging.Therefore, the yellowing is assumed to originate fromannealable color centers in the formof free radicals that are trapped in the crystalline regions of the polymer and recombine at elevated temperatures. For the antioxidantcontaining HMWPE, yellowing was observed after both irradiation and thermal aging. The color change was correlated mainly to decomposition products of the antioxidant in addition to trapped radicals as in UHMW-PE. Additionally, black spots appeared after thermal aging of HMW-PE. KW - Irradiation KW - UHMWPE KW - Colour center KW - Yellowness index PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-423992 DO - https://doi.org/10.1155/2017/1362491 SN - 1687-9422 VL - 2017 IS - Article ID 1362491 SP - 1 EP - 10 PB - Hindawi AN - OPUS4-42399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Zencker, Uwe A1 - Völzke, Holger A1 - Schulze, Dietmar A1 - Probst, Ulrich T1 - Testing and Numerical Simulation of Elastomers - From Specimen Tests to Simulation of Seal Behavior under Assembly Conditions N2 - Due to delays in the siting procedure to establish a deep geological repository for spent nuclear fuel and high level radioactive waste as well as in construction of the already licensed Konrad repository for low and intermediate level radioactive waste, extended periods of interim storage become more relevant in Germany. BAM is involved in most of the cask licensing procedures and especially responsible for the evaluation of cask-related long-term safety issues. The long-term performance of elastomer seals for lid systems of transport and storage casks, whether used as auxiliary seals in spent fuel casks or as primary seals for low and intermediate level waste packages, is an important issue in this context. The polymeric structure of these seals causes a complex mechanical behavior with time-dependent sealing force reduction. The results of a comprehensive purpose-designed test program consisting of basic compression and tension tests as well as relaxation tests on unaged specimens of representative types of elastomers (fluorocarbon rubber (FKM) and ethylene propylene diene rubber (EPDM)) at different temperatures and strain rates are presented. They were used to identify the constitutive behavior and to obtain parameters for finite element material models provided by the computer code ABAQUS®. After estimating the influence of uncertainties such as Poisson’s ratio and friction coefficient by sensitivity analyses, the chosen parameters had to prove their suitability for the finite element simulation of the specimen tests themselves. Based on this preliminary work the simulation of a specific laboratory test configuration containing a typical elastomer seal with circular cross section is presented. The chosen finite element material model and the implemented parameters had to show that they are able to represent not only the specimen behavior under predominantly uniaxial load but also the more complex stress states in real components. Deviations between the measured and calculated results are pointed out and discussed. For the consideration of long-term effects in the simulation of elastomer behavior, test results of aged specimens are needed. First information about a new test program, started recently and planned to provide these data, are given. T2 - ASME 2017 Pressure Vessels & Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Time dependent effects KW - Low temperature behavior KW - Elastomeric seals KW - Aging KW - Simulation KW - Testing PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A035, 1 EP - 8 AN - OPUS4-41841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Jaunich, Matthias ED - van Breugel, K. ED - Koleva, D. ED - Beek, T. T1 - Investigation of long-term behaviour of elastomeric seals for transport and storage packages N2 - Elastomers are widely used as the main sealing materials in Containers for low- and intermediate-level radioactive waste and as an additional component fo metal seals in spent-fuel and high-level waste containers. According to appropriate guidelines and regulations, safe enclosure of the radioactive container contents has to be guaranteed for lengthy storage periods of at least 40 years. Therefore, the understanding of seal ageing behaviour is of high importance and has to be considered with regard to possible dynamic events taking place during transport after storage. An accelerated ageing approach for compressed seals is presented, as well as some first results. KW - O Ring KW - Ageing KW - Rubber seal PY - 2018 SN - 978-3-319-70192-9 DO - https://doi.org/10.1007/978-3-319-70194-3_2 SP - 17 EP - 25 PB - Springer AN - OPUS4-43248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - von der Ehe, Kerstin A1 - Wolff, Dietmar A1 - Jaunich, Matthias T1 - Effect of high-dose gamma irradiation on (U)HMWPE neutron shielding materials N2 - High and ultra-high molecular weight polyethylenes were gamma-irradiated with doses up to 600 kGy. The changes in the material properties were analysed using DSC, DMA, IR spectroscopy, as well as measurements of density and insoluble content. The irradiation led to an increase of the degree of crystallinity because of chain scissions during irradiation, leading to shorter and thus more mobile chains. Both the plateau value of the shear modulus G′ and the insoluble content increased with Irradiation dose, indicating the formation of additional crosslinks. Furthermore, IR spectroscopy revealed irradiation induced oxidation and the formation of double bonds, indicating that some of the hydrogen atoms responsible for the neutron shielding capability have been released. KW - Ultra high molecular weight KW - Polyethylene KW - Gamma irradiation KW - Crosslinking KW - Oxidation PY - 2018 DO - https://doi.org/10.1016/j.radphyschem.2017.02.014 SN - 0969-806X VL - 142 SP - 29 EP - 33 PB - Elsevier AN - OPUS4-42941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -