TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Erroneous or Arrhenius: A Degradation Rate-Based Model for EPDM during Homogeneous Ageing N2 - To improve the predictive capability of long-term stress relaxation of elastomers during thermo-oxidative ageing, a method to separate reversible and irreversible processes was adopted. The separation is performed through the analysis of compression set after tempering. On the Basis of this separation, a numerical model for long-term stress relaxation during homogeneous ageing is proposed. The model consists of an additive contribution of physical and chemical relaxation. Computer simulations of compression stress relaxation were performed for long ageing times and the results were validated with the Arrhenius treatment, the kinetic study and the time-temperature superposition technique based on experimental data. For chemical relaxation, two decay functions are introduced each with an activation energy and a degradative process. The first process with the lower activation energy dominates at lower ageing times, while the second one with the higher activation energy at longer ageing times. A degradation-rate based model for the evolution of each process and ist contribution to the total system during homogeneous ageing is proposed. The main advantage of the model is the possibility to quickly validate the interpolation at lower temperatures within the range of slower chemical processes without forcing a straight-line extrapolation. KW - Kinetic study KW - Arrhenius KW - TTS KW - Modeling KW - Chemical processes KW - Stress relaxation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512931 DO - https://doi.org/10.3390/polym12092152 SN - 2073-4360 VL - 12 IS - 9 SP - 1 EP - 21 AN - OPUS4-51293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - A numerical approach to correlate compression stress relaxation and compression set of elastomer O-rings with tightness N2 - The excellent mechanical properties of elastomer seals at a wide range of temperatures as well as their high versatility and recovery potential under several load conditions make these materials well suitable for the application in containers designed for transport and disposal of negligible heat generating radioactive waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered which prohibit an avoidable cask handling. An extensive knowledge of the change of the elastomer properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the safe enclosure of the radioactive material for the required time are mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have already been made and are still ongoing to scientifically support this task. Among other representative types of elastomers, specimen made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the with respect to application most important of their complex mechanical properties. Exemplary results of these investigations were used to calibrate material models implemented in the commercial finite element software ABAQUS/Standard®. The finite element model already presented in previous works uses a sequential temperature displacement coupling. The calculated compression stress relaxation (CSR) and compression set (CS) values do satisfactorily match the experimental results. In many investigations performed at BAM both values (CSR and CS) were identified as key indicators of elastomer’s long-term performance. However, the possibility to correlate these equivalent indicators with performance values such as tightness and leakage rate, measurable in the mounted state, is an important goal of our future work. In the presented study the ABAQUS® feature of “pressure penetration” is introduced in the suggested finite element model for this purpose. It provides the possibility to simulate the penetration of a gas into a possible gap between flange and O-ring causing an opening of a leakage path. Three dimensional and axis-symmetric finite element models were generated to represent flat and grooved flanges of different dimensions. The sensitivity of the feature to several input parameters is investigated and the observed behavior of the O-ring is correlated with the results of performed leakage tests. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Elastomer KW - Tightness KW - Leakage KW - Compression set KW - Compression stress relaxation PY - 2021 SN - 978-0-7918-8535-2 DO - https://doi.org/10.1115/PVP2021-61976 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Grelle, Tobias A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Wolff, Dietmar T1 - Three-dimensional thermal expansion of neat and irradiated (U)HMWPE materials at elevated temperatures N2 - The thermal expansion of polymeric parts can be an issue in many applications where the available space is limited, or exact dimensions of the part are required. For this study, a device was designed and built that allowed measuring the thermal expansion simultaneously in all three spatial directions on cubic samples with real-scale dimensions (78 mm edge length). The results are shown between 25 °C and 125 °C for two PE materials, one HMWPE and one tempered UHMWPE, for non-irradiated samples as well as cubes that have been irradiated with 100 and 400 kGy. The results measured with the new device were very similar to those measured with conventional thermo-mechanical analysis equipment and to literature data of UHMWPE. The HMWPE material shows a much larger thermal expansion coefficient in one direction compared to the other two directions during the first heating due to frozen stresses from the pressing step during material manufacturing. These stresses are mostly released by the expansion during the first heating, so that the expansion during the second heating is more uniform. The overall volumetric expansion is the same for both heating runs. By contrast, the tempered UHMWPE material shows no significant difference between first and second heating run, as the stresses from processing could already relax in the tempering step. The irradiation treatment does not affect the values significantly for the given test set-up. KW - Lupolen KW - Ultra high molecular weight polyethylene KW - GUR KW - Coefficient of thermal expansion KW - High temperature PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563987 DO - https://doi.org/10.1016/j.polymertesting.2022.107841 SN - 0142-9418 VL - 117 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-56398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Oxidative ageing of elastomers: Experiment and modelling N2 - During an extensive test programme at the Bundesanstalt für Materialforschung und prüfung, material property changes of EPDM O-rings were investigated at different ageing times and two ageing temperatures of 125∘C and 150∘C. To exclude possible diffusion-limited oxidation (DLO) effects that can distort the data, IRHD microhardness measurements were taken over the cross section of compressed O-rings. Continuous stress relaxation measurements were taken on samples free of DLO effects. The additional effect of physical processes to irreversible chemical ones during a long-term thermal exposure is quantified by the analysis of compression set measurements under various test conditions. By combining the different experimental methods, characteristic times relative to the degradation processes were determined. On the basis of experimental data, a microphysically motivated model that takes into account reversible and irreversible processes was developed. The parameter identification strategy of the material model is based on our experimental investigations on homogeneously aged elastomer O-rings. The simulated results are in good agreement with the experiments. KW - Compression stress relaxation KW - Compression set KW - IRHD microhardness KW - Modelling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545910 DO - https://doi.org/10.1007/s00161-022-01093-9 SN - 1432-0959 SP - 1 EP - 9 PB - Springer CY - Berlin AN - OPUS4-54591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Investigation of the time and temperature dependent behavior of metal seals in radioactive waste containers N2 - The Bundesanstalt für Materialforschung und –Prüfung (BAM) runs an investigation program on the long-term behavior of multi-component metal seals. Such seals are used in a wide area of applications including transport and storage casks for spent nuclear fuel and high level radioactive waste. The seal function is mainly based on the compression of the inner helical spring, which generates the necessary seal force to keep the sealing surfaces in close contact. This in turn leads to a plastic deformation of the outer jacket of the seal, comprised of highly ductile aluminum or silver that adapts to the sealing surfaces of cask body and bolted lid, thus providing high Level leak tightness. In Germany, those casks are licensed for Interim storage periods of up to 40 years or more if extended Interim storage would become necessary before a final repository is available. Thus, the sealing performance has to be evaluated, including factors like elevated temperature due to decay heat or mechanical loads due to transport under normal as well as accident conditions. Long-term investigations at BAM have been running over the last nine years to identify and evaluate the seal performance by measuring the remaining seal force, the useable resilience and the leakage rate after various time intervals at temperatures ranging from room temperature up to 150 °C. It was found that the seal force and useable resilience decrease with time and temperature, caused by creep deformation of the outer jacket. In order to obtain an analytical description for the seal behavior and to achieve more information on the material behavior under application conditions a comprehensive investigation program with Focus on aluminum as outer jacket material was launched. The program includes material investigations such as compression and tension creep tests with representative basic materials. An additional test setup allows for the continuous measurement of the remaining seal force at temperatures of up to 150 °C. Furthermore, seal segments are compressed and stored in heating chambers, thus producing segments at different stages of the aging process. The segments are investigated regarding the development of the contact area width, jacket thickness and microstructural changes. This data will be used to develop material models and an analytical description of the time and temperature dependent long-term sealing behavior. This paper explains the current status of gained test results and modelling approaches and closes with an outlook to the future Project plans. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 SP - PVP2018-84584, 1 EP - 6 AN - OPUS4-46110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Horn, Jutta A1 - Völzke, Holger A1 - Wolff, Dietmar T1 - Long-Term Performance of Elastomer seals - From Aging Tests to Lifetime Estimations N2 - Elastomers show a high versatility which makes them ideal materials for sealing applications in various fields. Especially under changing application conditions the high recovery potential of this class of material is beneficial to compensate temperature or pressure fluctuation, and geometrical changes resulting from mechanical loads in e.g. accident conditions. Out of these reasons elastomers are also used in containers for low and intermediate level radioactive waste and for spent fuel transportation casks. In casks designed for low and intermediate level waste elastomer seals can act as primary seal responsible for the containment function whereas in spent fuel storage and transportation casks (dual purpose casks (DPC)) elastomer seals are used as auxiliary seals to allow leakage rate measurements of metal barrier seals. An inherent prerequisite for this kind of application is the Long time-scale of operation without or with limited possibility of seal replacement. In Germany an interim storage license for DPC`s is typically issued for 40 years, a timeframe which might increase in the future due to challenges of the final repository siting procedure. For low and intermediate level waste, also long time periods are required before final disposal can be achieved. Therefore, the performance of elastomer seals over extended time periods is, as for other applications, of high importance. A typical approach to ensure long-term functionality is to perform accelerated aging tests to calculate an estimated lifetime by assuming e.g. Arrhenius like equations for the timetemperature relationship. This approach requires a suitable end of life criterion considering the application of interest. This often can represent a challenge on its own. As BAM is involved in most of the cask licensing procedures and especially responsible for the evaluation of cask-related long-term safety issues we initiated several test programs for investigating the behavior of elastomer seals. Experiments concerning the low temperature performance down to -40 °C and the influence of gamma irradiation have been started first. Currently the thermal aging behavior of elastomer seals, which is the topic of this contribution, is examined. For our aging investigations we use a broad approach to first determine the property changes in different elastomer materials due to thermo-oxidative aging at elevated temperatures and secondly, we test how the typical methods of lifetime extrapolation can be applied to these results. This Approach enables us to detect and exclude undesired side effects which very often influence lifetime estimations. In this contribution, our recent results are extended. The results show that lifetime estimation based on single material properties can be misleading and therefore a combination of several methods is recommended. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Seal performance KW - Rubber KW - Ageing PY - 2018 VL - PVP2018 SP - 84631-1 EP - 84631-8 AN - OPUS4-46346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Arfi, W. A1 - Khan, A. A1 - Moulai, F. A1 - Agroui, K. A1 - Baretta, C. A1 - Oreski, G. A1 - Jaunich, Matthias ED - Munday, J. ED - Bermel, P. ED - Kempe, M. T1 - Optical and thermal analysis of PVB encapsulant polymer functionalized with luminescent organic dyes N2 - This work focused on the technology of luminescent down shift (LDS), with a primary aim to identify and investigate a methodology to introduce the luminescent organic dye into PVB polymer encapsulant as emergent material for photovoltaic application. For this goal, we propose to study the feasibility to implement the LDS functionality and to identify suitability of available luminescent to be incorporated into the host polymer encapsulant material. The first step to this direction was through a comprehensive optical study of Violet 570 (V) organic dye in ethanol solvent. The methodology and experimental conditions such as laboratory polymer preparation and luminescence dye concentration were presented. Also, the emergent polymer encapsulant sheets were characterized by using optical and thermal analysis techniques. The absorption spectrum of the prepared PVB material shifts towards longer wavelengths, with increasing organic dye concentration. T2 - New Concepts in Solar and Thermal Radiation Conversion and Reliability CY - San Diego, California, United States DA - 19.08.2018 KW - Photovoltaic KW - Encapsulation KW - Luminescence PY - 2018 SN - 9781510620902 DO - https://doi.org/10.1117/12.2318428 SN - 1996-756X SP - Paper OH, 1 PB - SPIE CY - Bellingham, Washington, USA AN - OPUS4-47165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Pourmand, P. A1 - Wolff, Dietmar A1 - Hedenqvist, M. T1 - Analysis of O-ring seal failure under static conditions and determination of end-of-lifetime criterion N2 - Determining a suitable and reliable end-of-lifetime criterion for O-ring seals is an important issue for long-term seal applications. Therefore, seal failure of ethylene propylene diene rubber (EPDM) and hydrogenated nitrile butadiene rubber (HNBR) O-rings aged in the compressed state at 125 °C and at 150 °C for up to 1.5 years was analyzed and investigated under static conditions, using both non-lubricated and lubricated seals. Changes of the material properties were analyzed with dynamic-mechanical analysis and permeability experiments. Indenter modulus measurements were used to investigate DLO effects. It became clear that O-rings can remain leak-tight under static conditions even when material properties have already degraded considerably, especially when adhesion effects are encountered. As a feasible and reliable end-of-lifetime criterion for O-ring seals under static conditions should include a safety margin for slight dimensional changes, a modified leakage test involving a small and rapid partial decompression of the seal was introduced that enabled determining a more realistic but still conservative end-of-lifetime criterion for an EPDM seal. KW - EPDM KW - HNBR KW - Seal failure KW - Leak-tightness KW - DLO KW - Oxygen permability KW - DMA KW - Indenter modulus PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486125 DO - https://doi.org/10.3390/polym11081251 SN - 2073-4360 VL - 11 IS - 8 SP - 1251, 1 EP - 19 PB - MDPI CY - Basel, CH AN - OPUS4-48612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Scission, cross-linking, and physical relaxation during thermal degradation of elastomers N2 - Elastomers are susceptible to chemical ageing, i.e., scission and cross-linking, at high temperatures. This thermally driven ageing process affects their mechanical properties and leads to limited operating time. Continuous and intermittent stress Relaxation measurements were conducted on ethylene propylene diene rubber (EPDM) and hydrogenated nitrile butadiene rubber (HNBR) samples for different ageing times and an ageing temperature of 125 °C. The contributions of chain scission and cross-linking were analysed for both materials at different ageing states, elucidating the respective ageing mechanisms. Furthermore, compression set experiments were performed under various test conditions. Adopting the two-network model, compression set values were calculated and compared to the measured data. The additional effect of physical processes to scission and cross-linking during a long-term thermal exposure is quantified through the compression set analysis. The characteristic times relative to the degradation processes are also determined. KW - Ageing KW - Scission KW - Cross-linking KW - Compression set KW - Physical relaxation PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486091 DO - https://doi.org/10.3390/polym11081280 SN - 2073-4360 VL - 11 IS - 8 SP - 1280, 1 EP - 12 PB - MDPI AN - OPUS4-48609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias T1 - Editorial N2 - Dear Readers, a new year started for all of us (as I write these lines, possibly it was already some time ago when these lines are finally available) and this is the time for the so-called New Year’s resolutions. Setting goals and changing our behavior as well in a private as in a professional context. For Scientists the resolutions may comprise tasks like finalizing a longago started publication, picking up the loose ends of an application for funding or just bringing the running projects in a greater structure. KW - Editorial KW - Polymer Testing PY - 2019 DO - https://doi.org/10.1016/j.polymertesting.2019.01.010 SN - 0142-9418 VL - 74 SP - A1 PB - Elsevier AN - OPUS4-47406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -