TY - CONF A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Albouy, P.-A. A1 - Häcker, Ralf A1 - Stock, Daniel T1 - Overview of ongoing research and future prospects on polyethylene neutron shielding materials at bam N2 - The extension of the interim storage period of radioactive waste before disposal will cause additional challenges for the nuclear waste management in Germany, so that an extensive knowledge of the long-term performance of casks, including their components and inventories, will be required for future extended storage licenses. Ultra-high and high molecular weight polyethylenes ((U)HMW-PE) are used for neutron shielding purposes in casks for storage and transport of spent fuel and high-level waste due to their extremely high hydrogen content. During their service life of several decades as cask components, the PE materials are exposed to neutron and gamma radiation from the radioactive inventory of the casks, mechanical assembling stresses and temperature. All these combined effects affect the material properties of such components which in turn may be crucial for some possible accident scenarios. At the Bundesanstalt für Materialforschung und -prüfung (BAM), the effects of high temperature exposure in combination with subsequent or previous irradiation were investigated with a comprehensive aging program including thermal aging at 125 °C for different aging periods up to 5 years and irradiation with doses ranging from 50 to 600 kGy. This contribution provides an overview of the ongoing research related to the structural changes of (U)HMW-PE induced by gamma irradiation and high temperature exposure and focuses on current research perspectives at BAM with regard to the prediction of the dynamic behavior of the material during extended interim storage in case of an accident scenario. First results of the coupled effect of temperature, radiation and mechanical loading will be presented. The effect of microstructural changes induced by gamma irradiation and high temperature on the mechanical behavior of (U)HMW-PE will be assessed. T2 - PATRAM22 CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - (U)HMWPE KW - Ageing KW - Irradiation KW - WAXD KW - SHPB PY - 2023 SP - 1 EP - 10 AN - OPUS4-57707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -