TY - GEN A1 - Wolff, Dietmar A1 - von der Ehe, Kerstin A1 - Jaunich, Matthias A1 - Böhning, Martin A1 - Goering, Harald ED - Yamamoto, T. T1 - (U)HMWPE as neutron radiation shielding materials: impact of gamma radiation on structure and properties T2 - Effects of radiation on nuclear materials N2 - Due to their extreme high hydrogen contents, high molecular weight (HMW-) and ultra-high molecular weight (UHMW-) polyethylene (PE) are a comprehensible choice as neutron radiation shielding material in casks for storage and transport of radioactive materials. But as a direct consequence of inserting radioactive material in such casks, gamma radiation occurs. Hence, the impact of gamma radiation on the molecular structure of polyethylene has to be taken into consideration. Consequently, PE has to withstand any type of gamma radiation induced degradation affecting safety relevant aspects in order to be applicable for long term neutron radiation shielding purposes during the whole storage period (in Germany, for instance, up to 40 years). The scope of our investigation comprises an estimation of the impact of gamma radiation and temperature on the molecular and supra molecular structure of the two types of PE used as neutron radiation shielding cask components. A further point which is worth exploring is to what extent these changes are detectable by conventional analysis methods. Therefore, thermoanalytical measurements were performed such as differential scanning calorimetry (DSC), thermo mechanical analysis (TMA), dynamic mechanical analysis (DMA), and thermo gravimetric analysis (TGA). Additionally optical and weighing methods were applied. With those methods it is possible to detect structural changes in polyethylene induced by exposure to gamma radiation. The observed amounts of changes of the irradiated material are not safety relevant for the application of polyethylene as neutron radiation shielding material; moreover, some properties actually improve via irradiation. KW - HMW-PE KW - UHMW-PE KW - Gamma irradiation KW - Neutron radiation shielding material PY - 2013 SN - 978-0-8031-7533-4 DO - https://doi.org/10.1520/STP103980 N1 - Serientitel: STP – Series title: STP VL - 25 IS - STP 1547 SP - 211 EP - 227 AN - OPUS4-27931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Zaghdoudi, Maha A1 - Wolff, Dietmar T1 - A closer look at elastomer O-ring seals - Interesting aspects of these typical machine elements and ways to evaluate their performance - N2 - For many sealing applications rubber O-rings are applied due to their special properties and easy use. In many applications as e.g. in aviation, traffic or process technology the material can be exposed to a variety of conditions during operation as e.g. low temperatures, elevated temperatures and different media. Therefore, it is important to know the material behaviour and the seal performance under those conditions. Additionally ageing of seals is an important factor which has an influence on the long term reliability. In this contribution we would like to discuss different aspects affecting the seal performance, lifetime estimation and address open questions which should be addressed to come to a deeper understanding of these seals commonly understood as typical machine elements. Results of running investigations at the Bundesanstalt für Materialforschung und -prüfung (BAM), Division 3.4 “Safety of Storage Containers” are presented and discussed. T2 - Technomer 2019 CY - Chemnitz, Germany DA - 07.11.2019 KW - Seal KW - Machine element KW - Rubber PY - 2019 AN - OPUS4-49981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - A new method to evaluate the low temperature function of rubber sealing materials JF - Polymer testing N2 - A new method for the evaluation of the low temperature properties of rubber materials is presented. The method emulates the standardized compression set measurement, which is frequently used for sealing materials, but can be performed within a considerably shorter time. The results are compared with the standard test and found to be qualitatively the same. Slight differences are discussed on the basis of the differences in the measurement procedures. Further data evaluation is done by fitting functions to describe the material behaviour. KW - Sealing material KW - Elastomer KW - Compression set KW - Dynamic mechanical analysis KW - Low temperature behaviour PY - 2010 DO - https://doi.org/10.1016/j.polymertesting.2010.07.006 SN - 0142-9418 VL - 29 IS - 7 SP - 815 EP - 823 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-21914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - A numerical approach to correlate compression stress relaxation and compression set of elastomer O-rings with tightness T2 - Proceedings of the ASME 2021 Pressure Vessels & Piping Conference (PVP2021) N2 - The excellent mechanical properties of elastomer seals at a wide range of temperatures as well as their high versatility and recovery potential under several load conditions make these materials well suitable for the application in containers designed for transport and disposal of negligible heat generating radioactive waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered which prohibit an avoidable cask handling. An extensive knowledge of the change of the elastomer properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the safe enclosure of the radioactive material for the required time are mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have already been made and are still ongoing to scientifically support this task. Among other representative types of elastomers, specimen made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the with respect to application most important of their complex mechanical properties. Exemplary results of these investigations were used to calibrate material models implemented in the commercial finite element software ABAQUS/Standard®. The finite element model already presented in previous works uses a sequential temperature displacement coupling. The calculated compression stress relaxation (CSR) and compression set (CS) values do satisfactorily match the experimental results. In many investigations performed at BAM both values (CSR and CS) were identified as key indicators of elastomer’s long-term performance. However, the possibility to correlate these equivalent indicators with performance values such as tightness and leakage rate, measurable in the mounted state, is an important goal of our future work. In the presented study the ABAQUS® feature of “pressure penetration” is introduced in the suggested finite element model for this purpose. It provides the possibility to simulate the penetration of a gas into a possible gap between flange and O-ring causing an opening of a leakage path. Three dimensional and axis-symmetric finite element models were generated to represent flat and grooved flanges of different dimensions. The sensitivity of the feature to several input parameters is investigated and the observed behavior of the O-ring is correlated with the results of performed leakage tests. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Elastomer KW - Tightness KW - Leakage KW - Compression set KW - Compression stress relaxation PY - 2021 SN - 978-0-7918-8535-2 DO - https://doi.org/10.1115/PVP2021-61976 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Buchholz, Uwe A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Habel, Wolfgang A1 - Petersson, B.A.T. T1 - Acoustic data of cross linked polyethylene (XLPE) and cured liquid silicone rubber (LSR) by means of ultrasonic and low frequency DMTA JF - IEEE transactions on dielectrics and electrical insulation N2 - Partial discharges may cause damage to electrical insulation of high voltage equipment. They initiate elastic waves in the insulating material, e.g. in the stress cone of an outdoor termination. Localisation of the origin of such elastic waves can help to predict serious damaging processes in the electrical insulation. In order to measure and evaluate the wave propagation effects in typical multilayered elastomeric structures, knowledge of the material properties is required. The propagating velocity and the attenuation of longitudinal waves are important parameters. Values for these quantities found in the literature were not appropriate. Therefore, for cross-linked polyethylene (XLPE) and cured liquid silicone rubber (LSR), the longitudinal wave velocity and the attenuation were evaluated in the temperature interval from -20°C to 50°C and in the frequency range from 200 kHz to 600 kHz using a two-sample ultrasound technique. The loss factor was determined from these measured quantities. Additionally, low frequency Dynamic Mechanical Thermal Analysis (DMTA) was applied to investigate LSR and XLPE in a temperature interval between -100 and 50°C and to check qualitatively the ultrasound data. KW - Acoustic propagation KW - Cross linked polyethylene insulation KW - Mechanical variables measurement KW - Silicone rubber PY - 2012 DO - https://doi.org/10.1109/TDEI.2012.6180250 SN - 1070-9878 SN - 0018-9367 SN - 1558-4135 VL - 19 IS - 2 SP - 558 EP - 566 PB - Institute of Electrical and Electronics Engineers CY - New York, NY AN - OPUS4-26106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing and lifetime prediction of O-ring seals made of HNBR, EPDM and FKM T2 - 12. Kautschuk Herbst Kolloquium N2 - BAM is the federal institute for materials research and testing in Germany. One of our tasks is to evaluate the safety of casks designed for transport and/or storage of radioactive waste. As elastomeric seals are used in the containers as safety-relevant parts, it is our goal to be able to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. For this reason, an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) was started. Ageing was performed at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) for up to 2 years. For assessing properties related to the sealability, O-rings were aged in compression by 25 % (corresponding to the compression during service) between plates. For comparison, uncompressed O-rings were aged as well. The aged materials were characterized with conventional polymer analysis methods such as hardness and tensile tests, but also with more seal-specific methods such as compression stress relaxation (CSR, reflecting the loss of sealing force of a compressed seal over time), and compression set (CS, representing the recovery behaviour of a seal after release from compression). CS is chosen as the property for lifetime prediction as it is both sensitive to degradation and related to the seal performance. CS data is extrapolated to 60 °C, which yields lifetimes of approximately 5 years for HNBR and 64 years for EPDM for a criterion of 85 % CS respectively, and approx. 40 years for FKM for a criterion of 65 % CS (the highest value measured so far). T2 - 12. Kautschuk Herbst Kolloquium CY - Hanover, Germany DA - 22.11.2016 KW - Rubber KW - Compression set KW - Extrapolation KW - Degradation PY - 2016 SN - 9783981407648 VL - 2016 AN - OPUS4-38483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Wolff, Dietmar T1 - Ageing behaviour of elastomer seals N2 - The current results of the ongoing ageing investigations performed at BAM 3.4 are presented. T2 - ElastoMER 2017 CY - Merseburg, Germany DA - 27.09.2017 KW - Ageing KW - Seal KW - Degradation PY - 2017 AN - OPUS4-42476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing of elastomeric seals for storage containers T2 - Annual Meeting on Nuclear Technology 2015 N2 - At BAM Federal Institute for Materials Research and Testing in Germany, it is our responsibility to audit the safety of casks designed for transport and/or storage of radioactive material. With regard to the requirements on long-term safety of the containers, it is necessary to evaluate the service lifetime of the elastomeric seals used in the containers. With ageing, the elastomers will gradually lose their elasticity and their ability for recovery, which might result in a leakage above the allowed level or in a release of radioactivity during an incident. It is important to know the rate of degradation and which property can be used as an practical and easily measurable end-of-lifetime criterion. For this reason, we devised ageing experiments on different kinds of elastomers, namely FKM, EPDM and HNBR. The former two are actually used in containers for radioactive wastes – either as auxiliary seal in casks containing high activity waste, or as main seal in casks for medium or low activity waste. The latter is an often used seal material that is tested for comparative reasons. In our ageing program, these three materials are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) in order to extrapolate the data to service temperature using a suitable model. They are examined at logarithmic time intervals of several days up to 5 years. The samples are aged in their undeformed O-ring state as well as compressed between flanges with a deformation corresponding to the actual compression during service. Thus we can compare the ageing between relaxed and stressed sample. Additionally, we are ageing samples in flanges that allow leakage rate measurements. Other measurements include monitoring of the recovery force of the seal and the compression set. Furthermore, the samples are examined by thermal and dynamic-mechanical analysis for detecting changes in the glass transition temperature due to crosslinking or chain scission in the material. Besides, hardness is measured as a practical macroscopic indicator. Until now, we have analyzed samples aged up to 100 days. At the highest ageing temperature of 150 °C, the compressed EPDM has already reached a compression set of 95 %, while HNBR and FKM have reached 80 % and 30 %, respectively. Furthermore, HNBR has reached a Shore D hardness of 85, which is an immense increase after the initial value of 80 Shore A. However, when looking at the cross-section of the sample, it was obvious that only a layer of about 1 mm thickness has become so hard, while the inner part remained rubbery. This shows that there has been intense crosslinking mostly near the surface of the HNBR which forms a kind of oxygen diffusion barrier, inhibiting the thermooxidation of the inner part of sample which can retain elastic properties. In EPDM, the oxygen permeability is much greater, which leads to a more homogeneous degradation across the whole sample and thus resulted in a higher compression set. The low compression set of FKM shows the outstanding high-temperature properties of this material. T2 - Annual Meeting on Nuclear Technology 2015 CY - Berlin, Germany DA - 2015-05-05 KW - Elastomer KW - Rubber KW - Aging KW - Lifetime KW - Seal KW - Cask KW - Compression PY - 2015 SN - 978-3-926956-98-9 SP - 1 EP - 10(?) PB - INFORUM-Verl. u. Verwaltungsges. AN - OPUS4-33782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing of elastomeric seals for storage containers T2 - IRC 2015 - International rubber conference / DKT 2015 - Deutsche Kautschuk-Tagung N2 - At BAM Federal Institute for Materials Research and Testing in Germany, it is our responsibility to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes the investigation of elastomeric seals applied in the containers. Besides examining the low-temperature behavior of elastomeric seals, it is our goal to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. Furthermore, we deem it necessary to exceed the requirements given in the ageing standard DIN 53508 and take into account diffusion-limited oxidation (DLO) effects and non-Arrhenius behavior when making lifetime predictions. Therefore, we started an ageing programme with selected rubbers (HNBR, FKM and EPDM) which are oven-aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) in order to extrapolate the data to service temperature using different models and check which one is appropriate. Samples are examined at different times up to 5 years. In order to be able to compare between compressed and relaxed rubber, they are aged in two conditions: the undeformed O-ring state as well as compressed between plates with a compression of 25 % corresponding to the actual compression during service. Additionally, we are ageing samples in flanges that allow leakage rate measurements which is the central performance criterion. Analysis methods include hardness as a quick indicator, compression set and compression stress relaxation as measures reflecting the actual properties of a compressed seal. Additionally, we are applying classical polymer analysis methods like dynamic mechanic analysis and thermogravimetric analysis which show changes in the polymeric structure due to chain scission and crosslinking. Furthermore, we are testing the leakage rate of the O-rings in order to correlate the changes in physical properties to the actual performance of the seal. First results of samples aged up to 100 days show a strong increase in hardness for HNBR, a moderate increase for EPDM and hardly a change for FKM. A similar result is seen in the compression set of samples aged 100 d at 100 °C in compression as HNBR has reached 60 %, EPDM 25 % and FKM 15 % compression set. However, after ageing at 150 °C, EPDM shows a worse performance with 95 % compression set compared to HNBR with only 80 %. This is probably due to DLO effects in HNBR that appear because of the fast ageing and low oxygen permeability in HNBR. This leads to a deficit of oxygen in the center of the sample which is thus protected from ageing and can retain elastic properties. The full paper shall discuss the changes in material properties observed to date and the impact on the performance of elastomeric seals. T2 - IRC 2015 - International rubber conference CY - Nürnberg, Germany DA - 29.06.2015 KW - Elastomer KW - Rubber KW - Aging KW - Lifetime KW - Seal KW - Cask KW - Compression PY - 2015 SP - 1 EP - 10 AN - OPUS4-34939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, M. A1 - Kömmling, Anja A1 - Böhning, Martin A1 - Jaunich, Matthias T1 - Ageing of elastomers in air and in hydrogen environment: A comparative study JF - International Journal of Hydrogen Energy N2 - EPDM, HNBR and FKM materials were exposed at 150 ◦C to air under atmospheric pressure and to hydrogen at 50 bar for different ageing times. All measurements after hydrogen exposure were conducted on samples in degassed condition to assess irreversible effects resulting from that exposure and to compare them to those after ageing in air. Density, hardness, tensile properties, compression set, and hydrogen permeability of all samples were analysed. In both ageing environments, HNBR exhibited the most significant changes of material properties. However, for both EPDM and HNBR, considerably less severe ageing effects were observed under hydrogen in comparison to ageing in air. On the other hand, FKM showed about the same low level of deterioration in both ageing environments but exhibited poor resistance against damage due to rapid gas decompression in hydrogen environment that can lead to seal failure. The obtained results may serve as a guidance toward a better understanding for design and utilisation of elastomeric materials in future hydrogen infrastructure components. KW - Rapid gas decompression KW - Condensed Matter Physics KW - Hydrogen KW - Sustainability and the Environment KW - Rubber sealing KW - Renewable Energy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597417 DO - https://doi.org/10.1016/j.ijhydene.2024.03.053 SN - 0360-3199 VL - 63 SP - 207 EP - 216 PB - Elsevier B.V. AN - OPUS4-59741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing of HNBR, EPDM and FKM O-rings JF - KGK - Kautschuk Gummi Kunststoffe N2 - HNBR, EPDM and FKM O-rings were aged uncompressed and compressed at 75 °C, 100 °C, 125 °C and 150 °C for up to 1 year. HNBR exhibited the strongest ageing effects with high increases of hardness and glass transition temperature. Furthermore, heterogeneous ageing caused by diffusion-limited oxidation effects had a significant influence for HNBR at ageing temperatures of 125 °C and 150 °C. EPDM showed similar property changes as HNBR, but less pronounced. FKM displayed only minor ageing effects. O-rings aged in compression exhibited considerable compression set (CS). CS data was used for a time-temperature shift and resulting master curve construction. Leakage rate measurements showed that O-rings can remain leak tight under static conditions even if material properties have already deteriorated strongly. N2 - HNBR-, EPDM- und FKM-O-Ringe wurden unverpresst und verpresst für bis zu 1 Jahr bei 75 °C, 100 °C, 125 °C und 150 °C gealtert. HNBR wies mit hohen Anstiegen von Härte und Glasübergangstemperatur die stärksten Alterungseffekte auf. Weiterhin hatte heterogene Alterung aufgrund von diffusionsbegrenzten Oxidationseffekten einen wesentlichen Einfluss auf HNBR bei Alterungstemperaturen von 125 °C und 150 °C. EPDM zeigte ähnliche Eigenschaftsänderungen wie HNBR, allerdings schwächer ausgeprägt. FKM wies nur geringfügige Alterungseffekte auf. O-Ringe, die verpresst gealtert wurden, hatten eine starke bleibende Verformung (DVR). Die gemessenen DVRWerte wurden für eine Zeit-Temperatur-Verschiebung und die Konstruktion einer Masterkurve genutzt. Leckageratenmessungen zeigten, dass O-Ringe unter statischen Bedingungen dicht bleiben können, auch wenn die Materialeigenschaften schon stark degradiert sind. KW - Aging KW - Degradation KW - Leakage KW - Compression KW - Seal PY - 2016 SN - 0022-9520 SN - 0948-3276 VL - 69 IS - 4 SP - 36 EP - 42 PB - Hüthig CY - Heidelberg, Germany AN - OPUS4-36336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Zaghdoudi, Maha T1 - Ageing under Hydrogen: effects on O-ring seals N2 - In this work we present results for three typical sealing materials (EPDM, HNBR, FKM) after up to 100 days ageing at high temperature under hydrogen. To allow for a better evaluation of the occurring changes the results are compared with effects of ageing in air on the material properties. Despite the common assumption that ageing under hydrogen atmosphere is expected to be less severe for the material in com-parison to air ageing, this is not seen for every material. T2 - Technomer 2023 CY - Chemnitz, Germany DA - 09.11.2023 KW - Hydrogen KW - Ageing KW - Seal KW - Compression set PY - 2023 AN - OPUS4-58818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Aging of elastomeric seals for storage casks T2 - WM2015 Conference (Proceedings) N2 - Elastomeric seals are used in many containers, including casks for radioactive waste. However, like all polymers, elastomers are prone to aging, which leads to a loss of sealing force and the ability for recovery which can ultimately result in leakage. Therefore it is important to be able to define an end-of-lifetime criterion and to judge the lifetime of elastomeric seals. For this reason, we started an aging program on three kinds of rubbers (HNBR, EPDM, FKM), monitoring the change of properties at four different aging temperatures over extended periods up to five years. The measured data is used for lifetime prediction by applying a suitable model. T2 - WM2015 Conference CY - Phoenix, Arizona, USA DA - 15.03.2015 KW - Aging KW - Elastomer KW - Seal KW - Leakage KW - Compression PY - 2015 SN - 978-0-9828171-4-8 SP - 15080, 1 EP - 12 AN - OPUS4-33253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Subramani Bhagavatheswaran, E. A1 - Wießner, S. A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Aging study and electrical resistance based stress-monitoring of rubber seals T2 - 192nd Technical meeting of the ACS Rubber Division N2 - Elastomer seals are widely used as barrier seals in containers for low and intermediate level radioactive waste. In addition, they are also used in waste fuel storage and transportation casks as auxiliary seals. Depending on the area of use, the rubber materials have to demonstrate proper sealing performance with respect to mechanical, thermal and environmental conditions as well as irradiation during the entire operation period. A fundamental understanding of the structure property relationship and their changes during aging can help to evaluate the long-term sealing performance. In the present study, specific materials are investigated to study the structure-property and seal performance-correlation. Fluoro-elastomer (FKM), silicone rubber (VMQ) and ethylene propylene diene rubber (EPDM) were chosen as base rubbers. Comparable mechanical properties for these seals, especially in terms of a comparable compression behavior were achieved by careful control of base rubber formulation, i.e., by opting for the right filler and its concentration, amount of crosslinking chemicals, and with the assistance of process oils. Moreover, with the same rubber, similar mechanical properties were achieved by varying the filler concentration and crosslinking degree, which shall enable to correlate the particular influence on the structure property dependency of the seals in detail. The materials are investigated under pristine and aged conditions to evaluate the influence of aging, e.g. on the stress relaxation or recovery behavior. These values appear to be suitable parameters to judge the expected sealing performance. Due to the electrically conducting nature of some fillers used to reinforce rubbers (such as carbon blacks, carbon nanotubes (CNTs), Graphene, etc.) it is possible to obtain current information about mechanical and visco-elastic properties by monitoring the electrical conductivity or resistivity. A simple relation that relates electrical resistance with mechanical stress was derived and the stress values were theoretically predicted from the electrical resistance values, which showed good correlation with experimental results. T2 - 192nd Technical meeting of the ACS Rubber Division CY - Cleveland, OH, USA DA - 09.10.2017 KW - Seal KW - Rubber KW - Degradation KW - Structure-property relationship KW - Ageing PY - 2017 VL - 2017 SP - 1 EP - 25 AN - OPUS4-42849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Stark, Wolfgang T1 - Aktueller Stand der Online-Kontrolle der Elastomer Vulkanisation und Ausblick auf zukünftige Arbeiten T2 - Jahrestagung DKG-Bezirksgruppe Ost T2 - Jahrestagung DKG-Bezirksgruppe Ost CY - Merseburg, Germany DA - 2008-11-06 PY - 2008 AN - OPUS4-18271 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Aktueller Stand des Forschungsprojekts LaMEP N2 - Ergebnispräsentation zum Forschungsprojekt "Langzeitverhalten von Metall- und Elastomerdichtungen sowie Moderator-materialien als sicherheitsrelevante Komponenten von TLB für radioaktive Stoffe“ (LaMEP). T2 - BGZ Fachworkshop Zwischenlagerung CY - Berlin, Germany DA - 22.10.2019 KW - Metalldichtung KW - Elastomerdichtung KW - Neutronen Abschirmmaterial KW - Alterung KW - Degradation PY - 2019 AN - OPUS4-49429 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Alterung von Elastomerdichtungen für Lagerbehälter T2 - Technomer 2015 - 24. Fachtagung über Verarbeitung und Anwendung von Polymeren N2 - Unsere Aufgabe im Fachbereich 3.4 der Bundesanstalt für Materialforschung und prüfung (BAM) ist die sicherheitstechnische Begutachtung von Transport- und Lagerbehältern für radioaktiven Abfall, die für langfristige Zwischenlagerung ausgelegt sind. Ein Arbeitsschwerpunkt ist die Bewertung der Lebensdauer von Metall- und Elastomerdichtungen in den Behältern im Hinblick auf die Anforderungen für langfristige Behältersicherheit (min. 40 Jahre in Deutschland). Um die Eigenschaftsänderungen der Elastomerdichtungen während einer beschleunigten Alterung über lange Zeiträume (bis zu fünf Jahre) untersuchen zu können, wurde ein Alterungsprogramm an ausgewählten Elastomeren (HNBR, EPDM, FKM) begonnen. Im Gegensatz zu Normalterungsverfahren altern wir keine Normteile, sondern O-Ringe im unverpressten sowie verpressten Zustand. Diese Vorgehensweise ermöglicht die Bewertung des Einflusses der Verpressung auf die Alterung sowie die Untersuchung des Bauteilversagens mittels Leckageratenmessungen unter anwendungsnahen Bedingungen. Weitere Charakterisierungsmethoden sind Härtemessung, dynamisch-mechanische Analyse (DMA), Thermogravimetrie (TGA), Druckspannungsrelaxation, Druckverformungsrest (DVR), Dichtebestimmung und Zugversuch. Das Ziel ist, die Leckagerate mit anderen Eigenschaften bzw. Methoden zu korrelieren, um so ein aussagekräftiges und leichter zu bestimmendes Lebensdauerkriterium für elastomere O-Ringe abzuleiten. Während der Alterung können in Abhängigkeit von Material sowie Alterungsdauer und –temperatur Inhomogenitäten aufgrund von diffusionsbegrenzter Oxidation auftreten, durch die sich unterschiedliche Eigenschaften an der Oberfläche und im Volumen der Dichtung ergeben, was zu falschen Lebensdauerabschätzungen führen kann. Mittels Mikrohärtemessung über den Querschnitt werden diese Effekte charakterisiert und bei der Extrapolation mittels Zeit-Temperatur-Verschiebung und Arrheniusgraph berücksichtigt. Bisher liegen Daten von bis zu einem Jahr bei vier verschiedenen Temperaturen (75 °C, 100 °C, 125 °C und 150 °C) gealterten Proben vor. Nach 100 Tagen bei 150 °C weisen HNBR und EPDM schon einen DVR von über 80 % auf, aber noch keinen signifikanten Anstieg der Leckagerate. Diese sinkt zunächst während der Alterung, da die Permeabilität aufgrund von Vernetzungsreaktionen sinkt. Bei HNBR ist dies aufgrund der dominanteren Vernetzungsreaktionen während der Alterung noch stärker ausgeprägt als bei EPDM. T2 - Technomer 2015 - 24. Fachtagung über Verarbeitung und Anwendung von Polymeren CY - Chemnitz, Germany DA - 12.11.2015 KW - Aging KW - Elastomer KW - Seal KW - Leakage KW - Compression PY - 2015 SN - 978-3-939382-12-6 SP - 43 CY - Chemnitz AN - OPUS4-35050 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - An Approach to improve the understanding of elastomeric seals in use in storage containers T2 - 45th Annual Meeting on Nuclear Technology T2 - 45th Annual Meeting on Nuclear Technology CY - Frankfurt am Main, Germany DA - 2014-05-06 PY - 2014 AN - OPUS4-30669 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - An approach to improve the understanding of elastomeric seals in use in storage containers T2 - 45th Annual meeting on nuclear technology (Proceedings) N2 - Elastomers are widely used as main sealing materials in Containers for low and intermediate level radioactive waste and as additional component to metal seals in spent fuel and high active waste Containers. They are applied due to their special material properties and easy use [1]. For this application several challenging prerequisites must be met for the essential reliable Operation of the seal. T2 - 45th Annual meeting on nuclear technology CY - Frankfurt, Germany DA - 06.05.2014 PY - 2014 SN - 978-3-926956-99-6 SP - 1 EP - 4 AN - OPUS4-31250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Zaghdoudi, M. A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar ED - Altenbach, H. ED - Hitzler, L. ED - Johlitz, M. ED - Merkel, M. ED - Öchsner, A. T1 - Analysis of Heterogeneous Ageing of HNBR O-Rings T2 - Lectures Notes on Advanced Structured Materials 2 N2 - Abstract Hydrogenated nitrile butadiene rubber (HNBR) elastomer was thermo-oxidatively aged at different temperatures up to 150 °C. Fourier transform infrared spectroscopy (FTIR), compression stress relaxation (CSR) and international rubber hardness degree (IRHD) microhardness were used to characterise the chemo-mechanical changes of HNBR O-rings during thermo-oxidative ageing. FTIR shows the development of carbonyl, methyl and ester groups but the nitrile content was not affected by ageing. The effect of sample geometry during CSR was investigated. CSR data were converted through integrated kinetic laws. The conversion has proven its sensibility to detect heterogeneous ageing. This was confirmed by the IRHD measure-ments across the section of O-rings. The influence of compression during ageing was assessed through IRHD measurements across the section of compressed and uncom-pressed aged O-rings. The DLO effect was more pronounced in compressed O-rings. By applying the model of Wise et al., theoretical IRHD and oxidation profiles were determined on the basis of IRHD experimental data of compressed O-rings. Good agreements between the experimental and the theoretical IRHD profiles in the core region were obtained. However, near the edge, the theoretical IRHD values were overestimated. KW - Ageing KW - Rubber seals KW - Stress relaxation KW - Modelling PY - 2024 SN - 978-3-031-49042-2 DO - https://doi.org/10.1007/978-3-031-49043-9 SN - 1869-8433 SP - 331 EP - 348 PB - Springer Nature CY - Cham, Switzerland AN - OPUS4-59769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Pourmand, P. A1 - Wolff, Dietmar A1 - Hedenqvist, M. T1 - Analysis of O-ring seal failure under static conditions and determination of end-of-lifetime criterion JF - Polymers N2 - Determining a suitable and reliable end-of-lifetime criterion for O-ring seals is an important issue for long-term seal applications. Therefore, seal failure of ethylene propylene diene rubber (EPDM) and hydrogenated nitrile butadiene rubber (HNBR) O-rings aged in the compressed state at 125 °C and at 150 °C for up to 1.5 years was analyzed and investigated under static conditions, using both non-lubricated and lubricated seals. Changes of the material properties were analyzed with dynamic-mechanical analysis and permeability experiments. Indenter modulus measurements were used to investigate DLO effects. It became clear that O-rings can remain leak-tight under static conditions even when material properties have already degraded considerably, especially when adhesion effects are encountered. As a feasible and reliable end-of-lifetime criterion for O-ring seals under static conditions should include a safety margin for slight dimensional changes, a modified leakage test involving a small and rapid partial decompression of the seal was introduced that enabled determining a more realistic but still conservative end-of-lifetime criterion for an EPDM seal. KW - EPDM KW - HNBR KW - Seal failure KW - Leak-tightness KW - DLO KW - Oxygen permability KW - DMA KW - Indenter modulus PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486125 DO - https://doi.org/10.3390/polym11081251 SN - 2073-4360 VL - 11 IS - 8 SP - 1251, 1 EP - 19 PB - MDPI CY - Basel, CH AN - OPUS4-48612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agroui, K. A1 - Jaunich, Matthias A1 - Hadj Arab, A. T1 - Analysis techniques of polymeric encapsulant materials for photovoltaic modules: situation and perspectives JF - Energy Procedia N2 - The properties of the encapsulant are critical to the long-term performance of photovoltaic (PV) modules under the influence of sunlight including UV, elevated temperature, humidity and diffusion of oxygen. Encapsulation process represents a bout 40% of the whole PV module cost. The introduction of new non-EVA encapsulant material type "Low-Cost, High-Performance" should provide a solution to outdoor yellowing degradation problems. The emerging encapsulant materials exhibit a good compatibility with emerging PV solar cells for long term durability. This new generation of encapsulant materials has the advantage to improve e the PV module performances and long term durability for specific climate like desert regions. This scientific contribution presents an overview of the different encapsulant materials currently on the market, the general requirements of the emerging encapsulant materials and characterizations techniques for degradation, diagnostic and reliability lifetime estimation in the framework of Algerian renewable energy strategy. T2 - Africa-EU Renewable Energy Re search and Innovation Symposium, RERIS 2016 CY - Tlemcen, Algeria DA - 08.03.2016 KW - Solar cell KW - Polymer encapsulant KW - PV module KW - Encapsulation process KW - Analysis technique PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377186 DO - https://doi.org/10.1016/j.egypro.2016.07.171 SN - 1876-6102 VL - 2016 IS - 93 SP - 203 EP - 210 PB - Elsevier Ltd. AN - OPUS4-37718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agroui, K. A1 - Jaunich, Matthias A1 - Hadj Arab, A. T1 - Analysis techniques of polymeric encapsulant materials for photovoltaic modules: Situation and perspectives T2 - Africa-EU Symposium on renewable energy research and innovation N2 - The properties of the encapsulant are critical to the long-term performance of photovoltaic (PV) modules under the influence of sunlight including UV, elevated temperature, humidity and diffusion of oxygen. Encapsulation process represents about 40% of the whole PV module cost. The introduction of new non-EVA encapsulant material type “Low-Cost, High-Performance” should provide a solution to outdoor yellowing degradation problems. The emerging encapsulant materials exhibit a good compatibility with emerging PV solar cells for long term durability. This new generation of encapsulant materials has the advantage to improve the PV module performances and long term durability for specific climate like desert regions. This scientific contribution presents an overview of the different encapsulant materials currently on the market, the general requirements of the emerging encapsulant materials and characterizations techniques for degradation, diagnostic and reliability lifetime estimation in the framework of Algerian renewable energy strategy. T2 - Africa-EU Symposium on Renewable Energy Research and Innovation CY - Tlemcen, Algeria DA - 08.03.2016 KW - solar cells KW - PV modules KW - polymer encapsulant KW - encapsulation KW - analysis techniques PY - 2016 SP - 27 EP - 27 PB - European Union Energy Initiative – Partnership Dialogue Facility (EUEI PDF) CY - Eschborn, Germany AN - OPUS4-35917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Approach for the Investigation of Elastomer Seal long termin Behavior for Transport and Storage Packages T2 - Delft, Netherlands T2 - Delft, Netherlands DA - 2014-05-26 PY - 2014 AN - OPUS4-30668 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Wolff, Dietmar ED - Van Breugel, K. ED - Koenders, E.A.B. T1 - Approach for the investigation of long-term behaviour of elastomeric seals for transport and storage packages T2 - AMS 14 - Ageing of materials & structures - Proceedings of the 1st ageing of materials & structures 2014 conference N2 - Elastomers are widely used as main sealing materials for Containers for low and intermediate Ievel radioactive waste and as additional component to metal seals in spent fuel and high active waste Containers. According to appropriate guidelines and regulations safe enclosure of the radioactive Container contents has to be guaranteed for long storage periods as well as down to temperatures of -40 °C for transportation. Therefore the understanding of seal behaviour in general is of high importance and ageing of elastomeric seals has to be considered with regard to possible dynamic events taking possibly place during transport after storage. T2 - 1st Ageing of materials & structures 2014 conference CY - Delft, The Netherlands DA - 26.05.2014 KW - O-Ring KW - Seal KW - Ageing KW - Elastomer KW - Compression set PY - 2014 SN - 978-94-6186-313-3 SP - 87 EP - 93 AN - OPUS4-30820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Behaviour of Rubber Seals at Low Temperatures - Results of Component Tests - T2 - Jahrestagung Kerntechnik 2013 T2 - Jahrestagung Kerntechnik 2013 CY - Berlin, Germany DA - 2013-05-14 PY - 2013 AN - OPUS4-28519 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Behaviour of rubber seals at low temperatures - results of component tests - T2 - Jahrestagung Kerntechnik 2013 (Proceedings) N2 - The investigation of low temperature properties of elastomeric sealing materials by means of thermo-analytical methods is a sound way to get information about the glass transition process. The breakdown temperature of the sealing function of O-ring seals was measured in a component test setup depending on material and degree of compression. An in depth explanation of the observed component tests behaviour is currently in preparation. It requires the results of thermo-analytical methods and measurements as the compression set (not shown here). With that, a model was developed to describe the correlation between physical material parameters and observed component behaviour. T2 - Jahrestagung Kerntechnik 2013 CY - Berlin, Germany DA - 14.05.2013 PY - 2013 SP - 1 EP - 6 AN - OPUS4-28574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang A1 - Jaunich, Matthias A1 - McHugh, J. T1 - Carbon-fibre epoxy prepreg (CFC) curing in an autoclave analogue process controlled by dynamic mechanical analysis (DMA) JF - Polymer Testing N2 - Carbon fibre prepregs have found widespread application in lightweight constructions. They are based on a carbon-fibre fabric impregnated with reactive epoxy resin. DMA measurements under temperature conditions similar to an autoclave programme were carried out using commercially available prepreg material with a high glass transition temperature. The characteristic of the temperature programme was a dynamic heating segment at 1.5 K/min followed by a longer isothermal segment at 180 °C. The courses of the storage modulus E', loss modulus E'' and tanδ were recorded. The measuring frequency was varied between 1 Hz and 33.3 Hz. Gelation and vitrification are assigned. The influence of the measuring frequency on the time to vitrification and the correlation with DSC are discussed. The reaction does not end even after 10 h curing at 180 °C, which is interpreted as the slow cessation of the reaction caused by vitrification. KW - Prepreg KW - CFC KW - Curing KW - DMA KW - DSC KW - Autoclave KW - Gelation KW - Vitrification KW - Glass transition PY - 2013 DO - https://doi.org/10.1016/j.polymertesting.2013.09.014 SN - 0142-9418 VL - 32 IS - 8 SP - 1487 EP - 1494 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-29479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Wolff, Dietmar T1 - Characterisation of degradation and determination of end-of-lifetime criterion for O-ring seals N2 - The ageing of polymers, including elastomers, is an undesirable but inevitable process leading to a limited lifetime of rubber products such as seals. Independent of the application, as e.g. automotive, piping or container applications, a long lifetime or at least a timely exchange of a seal before occurence of critical failure is desired. In order to investigate the degradation of material properties and to determine the lifetime of elastomers used as seals, an ageing programme was started with hydrogenated acrylonitrile butadiene rubber (HNBR), ethylene propylene diene rubber (EPDM) and fluorocarbon rubber (FKM) [1-3]. Both O-ring seals (uncompressed and compressed by 25 %) with a cord diameter of 10 mm as well as sheets with a thickness of 2 mm were aged at 75 °C, 100 °C, 125 °C and 150 °C for up to two years. The changes of material properties during ageing were characterised for each material using the sheets by means of e.g. dynamic-mechanical analysis and tensile tests, while sealing properties such as compression stress relaxation (CSR), compression set (CS) and leakage rate were determined on O-rings. The experimental results indicate that while material properties, CSR and CS show considerable degradation effects, the static leakage rate stays constant or even decreases before failure occurs quite suddenly at advanced degradation levels. This reveals that static leakage rate has only limited sensitivity for the degradation of the seal material. Our approach to determine a suitable end of lifetime criterion, which involves a partial decompression of the seal during the leakage test, is presented and discussed. T2 - RubberCon 2017 CY - Prague, Czech Republic DA - 23.05.2017 KW - Rubber seal KW - Ageing KW - Leakage PY - 2017 AN - OPUS4-40381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Characterisation of degradation and determination of end-of-lifetime criterion for O-ring seals T2 - RubberCon 2017 N2 - The ageing of polymers, including elastomers, is an undesirable but inevitable process leading to a limited lifetime of rubber products such as seals. Independent of the application, as e.g. in automotive, piping or container applications, a long lifetime or at least a timely exchange of a seal before occurrence of critical failure is desired. In order to investigate the degradation of material properties and to determine the lifetime of elastomers used as seals, an ageing programme was started with hydrogenated acrylonitrile butadiene rubber (HNBR), ethylene propylene diene rubber (EPDM) and fluorocarbon rubber (FKM) [1-3]. Both O-ring seals (uncompressed and compressed by 25 %) with a cord diameter of 10 mm as well as sheets with a thickness of 2 mm were aged at 75 °C, 100 °C, 125 °C and 150 °C for up to two years. The changes of material properties during ageing were characterised for each material using samples from the sheets by means of e.g. Dynamic Mechanical Analysis and tensile tests, while sealing properties such as leakage rate were determined on O-rings. The experimental results indicate that while material properties show considerable degradation effects, the static leakage rate stays constant or even decreases before failure occurs quite suddenly at advanced degradation levels. This reveals that static leakage rate has only limited sensitivity for the degradation of the seal material. Our approach to determine a suitable end of lifetime criterion, which involves a partial decompression of the seal during the leakage test, is presented and discussed. T2 - RubberCon 2017 CY - Prague, Czech Republic DA - 23.05.2017 KW - Life time prediction KW - Ageing KW - Rubber seal KW - Leakage PY - 2017 SN - 978-80-906662-0-7 SP - 65 EP - 72 AN - OPUS4-40391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Schulz, Sebastian A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Characterization of the low temperature behaviour of rubber sealing materials T2 - 3. RAM-Behältersicherheitstage 2012, BAM T2 - 3. RAM-Behältersicherheitstage 2012, BAM CY - Berlin, Germany DA - 2012-03-22 PY - 2012 AN - OPUS4-25661 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Schulz, Sebastian A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Characterization of the low temperature behaviour of rubber sealing materials T2 - Technomer 2011 - 22. Fachtagung über Verarbeitung und Anwendung von Polymeren N2 - Rubbers are often used for seal applications due to their special material properties and easy use. In many applications the material is exposed to low temperatures during Operation. Therefore it is important to know the material behavior at low temperatures to determine the temperature ränge that allows a Safe Operation of the seal, e.g. in storage and transport Containers for radioactive materials. The seal function of an elastomer is limited in temperature by the rubber-glass transition during which the material properties change from rubber-like to stiff and glass-like. For a given application this correlation is not trivial and therefore needs an in-depth investigation under consideration of the physical properties and the application conditions. In this work different analytical methods are used to characterize the material behavior at low temperature in the ränge of the glass-rubber-transition and are compared with the quality of Operation of a component which is here defined by the detected leakage rate. T2 - Technomer 2011 - 22. Fachtagung über Verarbeitung und Anwendung von Polymeren CY - Chemnitz, Deutschland DA - 10.11.2011 PY - 2011 SN - 978-3-939382-10-2 IS - Kap. 3.7 SP - 1 EP - 4 AN - OPUS4-24971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Brandt, Guido A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Coefficients of Friction in Dependence on Aging State of Elastomers – Experimental Identification and Numerical Simulation of the Experiment T2 - Proceedings of the ASME 2022 Pressure Vessels & Piping Conference (PVP2022) N2 - Elastomer seals are mounted as barrier seals in lid systems of containers designed for transport and disposal of negligible heat generating radioactive waste and as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). When the behavior of mounted seals under normal and hypothetical accident conditions of disposal and transport is to be simulated, a comprehensive knowledge of their complex mechanical properties at every state of aging is necessary. In previous works, BAM’s efforts in experimental investigations on specimen artificially aged at different temperatures and times and the implementation of the found results in finite element material models were presented. Additionally, our approaches to reproduce the aging process itself and to extrapolate the results of artificially accelerated aging to longer times were presented. Numerical simulations have shown that the behavior of the seal during mounting and one-sided pressurizing and the resulting performance values such as leakage rate strongly depend on the coefficient of friction (COF) between flange and seal. The friction coefficient, in turn, depends on the aging state of the elastomer material as several publications suggest (see below). Dynamic COF between an exemplary ethylene propylene diene rubber (EPDM) material and a stainless steel ball were determined by using a self-designed linear oscillation tribometer. Unaged and artificially aged EPDM specimen stored for 30 days and 100 days at a temperature of 150 °C were tested. A stainless steel ball (d=10 mm) is brought in contact with the specimen’s surface und loaded by normal forces of 2.5 N, 5 N, 10 N and 20 N. During a reciprocating movement of the EPDM sheet, the horizontal force/friction force is continuously measured, and the COF can be derived. It is well known that friction is a complex phenomenon especially in soft materials. It cannot be excluded that the measured friction force is influenced by additional force components, resulting from the ball’s grooving through the elastomer’s surface. This force depends on the penetration depth of the ball and on the resistance of the elastomer in its different states of aging. The latter results from microstructural changes i.e., chain scission and additional crosslinking that occur during aging which in turn influence the softening or hardening of the material. A finite element (FE) ABAQUS® model was developed to reproduce the measurement process. It should help to better understand the physical mechanisms and to quantify the percentage of measured forces resulting from real friction on the one hand and forces resulting from unintended side effects that could falsify the result on the other hand. The behavior of the elastomer in its different states of aging is reproduced by a FE material model already presented in previous works of BAM. T2 - ASME 2022 Pressure Vessels & Piping Conference (PVP2022) CY - Las Vegas, NV, USA DA - 17.02.2022 KW - Numerical Simulation KW - Radioactive Waste KW - Elastomers KW - Aging KW - Seal Behavior KW - Leakage Rate KW - Coefficient of Friction KW - Experiment PY - 2022 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-57093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Zaghdoudi, Maha T1 - Comparison of ageing behaviour of O-ring seals under hydrogen and air N2 - Elastomeric seals are essential components in the infrastructure which prevent leakage of gas and proper function of technical devices and are therefore highly safety relevant. For proper function a remaining resilience and tolerance to pressure changes is required. The ageing of elastomers is an undesirable but inevitable process leading to a limited lifetime of rubber products such as seals. Independent of the application, as e.g. automotive, piping or container applications, a long lifetime or at least a timely exchange of a seal before occurrence of critical failure is desired. Hydrogen is a key element for the energy turnaround and therefore the compatibility of seals with hydrogen is essential. In addition to the effect of hydrogen uptake and release, which might also cause destructive effects such as rapid gas decompression, ageing at high temperature under hydrogen atmosphere is of interest too. Most of the existing work is addressing the performance of new materials and comprises only very limited investigations concerning long-term use and the behaviour of aged materials in contact with hydrogen. As ageing can lead to substantial changes of material properties, it must be evaluated whether these changes are beneficial or deteriorating for the component function. In this work we present and compare results of the characterisation of three sealing materials (EPDM, HNBR, FKM) after ageing at high temperature under hydrogen and air. Despite the common assumption that ageing under hydrogen atmosphere should be less severe for the material in comparison to air ageing, this is not the case for every material. T2 - RubberCon 2023 CY - Edinburgh, Scotland DA - 09.05.2023 KW - Hydrogen KW - Ageing KW - Seal PY - 2023 AN - OPUS4-58178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Comparison of low temperature properties of different elastomer materials investigated by a new method for compression set measurement JF - Polymer testing N2 - The method for the determination of compression set values with a Dynamic Mechanical Analysis (DMA) setup at low temperatures, which was presented previously, allows a much faster and readily automated procedure than the standardized compression set test according to ISO 815-2. This method is applied to a series of different elastomeric materials that are commonly used for sealing applications. The results of the compression set test are compared with results from thermal analysis to allow an in depth comparison of the material behaviour at low temperatures. Furthermore, a comparison between two EPDM materials is presented. These materials show very similar properties determined by thermo analytical methods such as Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) but differ clearly in their compression set behaviour. This comparison shows the importance and value of information of the compression set test in addition to thermal analysis to judge the behaviour of sealing materials and confirms the relevance of the new compression set test method for the investigation of low temperature properties of elastomers. KW - Sealing material KW - Elastomer KW - Compression set KW - Dynamic mechanical analysis KW - Low temperature behaviour PY - 2012 DO - https://doi.org/10.1016/j.polymertesting.2012.07.016 SN - 0142-9418 VL - 31 IS - 8 SP - 987 EP - 992 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-26538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Component and material investigations on metal seals for high level radioactive waste containers JF - Nuclear future N2 - Long-term investigations performed at BAM look to extend the state of knowledge on safety-related components of interim storage containers. Metal seals act as the primary sealing barrier in the bolted double lid closure system of the containers. The behaviour of metal seals has been investigated for ageing times up to 8.5 years and for various temperatures. The main cause for reduction in useable resilience overtime was due to creep deformation of the outer jacket of the seal. KW - Metal seal KW - Radioactive waste containers KW - Creep KW - Long-term behaviour PY - 2018 SN - 1745-2058 SP - 32 EP - 34 PB - Nuclear Institute CY - London AN - OPUS4-48206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Component and material investigations on metal seals for high level radioactive waste containers T2 - 11th International Conference on the Transport, Storage and Disposal of radioactive Materials N2 - In Germany casks for interim storage of spent nuclear fuel and high level radioactive waste are equipped with Helicoflex® metal seals as main sealing barrier of the double lid system. The long-term behaviour of those seals is investigated at Bundesanstalt für Materialforschung und –prüfung (BAM) in order to evaluate the safety function of the containment at different temperatures over storage periods of 40 years or more in case extended interim storage becomes necessary. Long-term investigations have been done for ageing times of up to 8.5 years at temperatures ranging from room temperature to 150 °C. It was found that the seal force and useable resilience decrease over time, which is mainly caused by creep deformation of the aluminium (or silver) outer jacket of the seals. This effect becomes stronger with increasing temperature. The ageing processes of the seal material and the overall seal behaviour is under investigation in order to derive analytical descriptions for the long-term seal performance. Thus, standardized tests on the basic seal materials, with focus on aluminium, and additional investigations on the seals as a component are conducted. The current investigations include compression and tension creep measurements as well as tensile testing. Furthermore, ageing of seal segments provides information on the development of the contact area width, jacket thickness and microstructural changes in dependence of time and temperature. The obtained data are used for the development of material models and an analytical approach to describe and predict the time and temperature dependent sealing behaviour in the long-term. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 SP - 18535, 1 EP - 6 AN - OPUS4-45452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liu, Yung A1 - Völzke, Holger A1 - Zencker, Uwe A1 - Jaunich, Matthias T1 - Cooperation in Advanced Technologies Associated with the Back End of Nuclear Fuel Cycle T2 - SMiRT 26 Conference Proceedings N2 - A Memorandum of Understanding (MOU) between Argonne National Laboratory (Argonne) and the German Bundesanstalt für Materialforschung und -prüfung (BAM) was signed in October 2014. Its objectives are to promote cooperation among scientists and specialists at Argonne and BAM and establish a framework for collaboration in advanced technologies associated with the back end of the nuclear fuel cycle. Collaborative activities involving Argonne and BAM may be implemented through the promotion of joint research activities and scientific workshops and conferences; exchange of technical information; and visits by scientists, specialists, and graduate, postgraduate, and Ph.D. students. The MOU was renewed in January 2020 for another five years. Highlights of the progress and achievements are provided in identified topical areas for collaboration on ageing management guidance, storage, transportation and disposal R&D, joint conference activities, and conclude with the benefits of the MOU in fostering Argonne and BAM collaboration. T2 - 26th International Conference on Structural Mechanics in Reactor Technology - SMiRT 26 CY - Potsdam, Germany DA - 10.07.2022 KW - Nuclear fuel cycle KW - Back end KW - Spent fuel performance KW - Storage KW - Transportation PY - 2022 SP - 1 EP - 10 AN - OPUS4-55861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Trappe, Volker A1 - Günzel, Stephan A1 - Jaunich, Matthias ED - Yao, W. ED - Renard, J. ED - Himmel, N.A. T1 - Correlation between crack propagation rate and cure process of epoxy resins T2 - Fatigue behaviour of fiber reinforced polymers - Experiments and simulations KW - Fracture toughness KW - Crack resistance KW - Fracture mechanics KW - Plastics KW - Crack propagation PY - 2012 SN - 978-1-60595-091-4 SP - 277 EP - 290 PB - DEStech Publications, Inc. CY - Lancaster, PA, USA AN - OPUS4-27947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trappe, Volker A1 - Günzel, Stephan A1 - Jaunich, Matthias T1 - Correlation between crack propagation rate and cure process of epoxy resins JF - Polymer testing N2 - Fracture mechanics approaches are increasingly applied for the characterization of epoxy resin and adhesive mechanical properties. Therefore, the fracture toughness and crack resistance under static load ISO 13586 [1] are often regarded as state of the art to analyse material improvements. However, experimental investigations on fatigue behaviour, thus the crack propagation according to ISO 15850 [2], seem to be much more sensitive to characterize the materials for in service loading conditions. Firstly, an efficient testing concept was developed at BAM. In this framework, the geometry for a modified single edge notched tensile specimen (SET) was developed in order to assure appropriate resolution in measuring the crack length via a CCD-camera [3]. In the next step, the influence of the cure temperature on the fracture-mechanical properties was investigated. KW - Fracture toughness KW - Crack resistance KW - Fracture mechanics KW - Plastics KW - Crack propagation PY - 2012 DO - https://doi.org/10.1016/j.polymertesting.2012.03.007 SN - 0142-9418 VL - 31 IS - 5 SP - 654 EP - 659 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-26937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Skrotzki, Birgit A1 - Wolff, Dietmar T1 - Creep investigations on aluminum seals for application in radioactive waste containers T2 - Proceedings of the International Conference on Aluminum Alloys 2018 N2 - In Germany spent nuclear fuel and high level radioactive waste is stored in interim storage containers with double lid systems. Those lids are equipped with metal seals (e.g. Helicoflex®) that ensure the safe enclosure of the inventory. The used metal seals consist of three components as can be seen in the cross-sectional view in Figure 1. The innermost part is a helical spring that is surrounded by an inner jacket made of stainless steel. The outer jacket that is made of a softer material which in case of assembly in the aforementioned storage containers is silver or aluminum (i.e. Al 99.5). During application the seal is compressed and due to the restoring force of the helical spring, the outer jacket is plastically deformed and adapts to the sealing surface. Hence, leakage paths are closed and the sealing function is generated. In Germany the above-mentioned containers are licensed for up to 40 years of interim storage, which in case extended storage becomes necessary before a final repository is available will have to be extended to even longer periods. Therefore, the evaluation of the long-term behavior of the seals is necessary, taking into account storage conditions, decay heat and possible mechanical loads as well. At Bundesanstalt für Materialforschung und –prüfung (BAM) long-term investigations are being conducted in which seals are assembled in test flanges and aged at temperatures ranging from room temperature to 150°C for accelerated aging. The aged seals are tested semi-annually (after the first 6 months in which the seals are tested more frequently) regarding the sealing performance, the remaining seal force, and the useable resilience upon decompression. Results of these investigations have been published over the past years (e.g. Grelle, Wolff, Probst, Jaunich, & Völzke, 2017; Völzke, Wolff, Probst, Nagelschmidt, & Schulz, 2014). It was found that the seal force and the useable resilience decrease with time and temperature, which is in agreement with the result of other studies (Sassoulas et al., 2006; Wataru et al., 2016) as well. Geometry change of the outer jacket has been identified as the main reason for this seal behavior. At the prevailing operating temperatures and stresses the aluminum is subjected to creep deformation leading to a thinning of the outer jacket. Since the seal groove depth remains unchanged the helical spring expands, which in turn leads to a decrease of the generated spring and seal force. Although the main reason for the change of seal parameters over time and temperature is known, a detailed characterization of the seal behavior and a reliable prediction of the parameter development for aging times that exceed the experimental time frame have not been possible, yet. For deeper understanding of the aging processes, an Investigation program, which is covered in this contribution, is conducted at Bundesanstalt für Materialforschung und –prüfung (BAM) that focusses on the behavior of the aluminum jacket and its influence on the long-term sealing performance. The program investigates properties of material samples as well as the behavior of the seal as a component. Original sheet material of the same aluminum that is used for manufacturing of the seals is investigated in compression creep tests. For this, a DMA (dynamic mechanical analysis) machine is employed (here used for static tests) that allows for a measurement of the specimens deformation under forces of up to 500 N. The advantage of this method is that the original material can be tested in the same shape as used for the seals which is 0.5 mm thick sheet material. For investigation of tensile creep standard specimens are used, that were machined from surrogate material of the same composition and annealing condition. Furthermore, aluminum seals that are cut into smaller segments are assembled in flanges and placed in heating chambers at temperatures ranging from 23°C to 150°C. After different periods of time from 3 days to 300 days the segments are taken out of the flanges and are investigated, thus giving information on different states of aging. Measurements of the development of the seal contact width and the aluminum jacket thickness are done with an optical microscope. Further investigations on the segments will include metallography and hardness measurements. From the detailed material and component behavior including the results of the long-term seal force and useable resilience investigations a better understanding of the overall seal behavior can be gained. The aim is to contribute to the development of material models and analytical approaches for the prediction of the sealing behavior in dependence of time and temperature. T2 - International Conference on Aluminum Alloys CY - Montreal, Canada DA - 17.06.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 SN - 978-1-926872-41-4 SP - 1 EP - 2 AN - OPUS4-45844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang A1 - Jaunich, Matthias A1 - McHugh, J. T1 - Cure state detection for pre-cured carbon-fibre epoxy prepreg (CFC) using temperature-modulated differential scanning calorimetry (TMDSC) JF - Polymer Testing N2 - Carbon-fibre prepregs have found widespread use in lightweight applications. They are based on a carbon-fibre fabric impregnated with reactive epoxy resin. Prepreg materials are generally pre-cured so that they have a higher molecular weight than typical resins in order to reduce resin flow, which facilitates storage and later processing properties. The measurements were carried out using commercially available materials and follow the published DMA investigations of the same material. TMDSC was used to find the correlation between curing conditions, the degree of cure and glass transition temperature. TMDSC has the advantage over standard DSC that it enables better determination of the glass transition temperature, which is often accompanied by an exothermic curing reaction, and thus overshadowed. The influence of the amplitude of temperature modulation was tested in preliminary experiments. For non-cured material a glass transition temperature of approximately 0 °C was determined; whereas for the totally cured material it was approximately 230 °C. The changes in degree of cure, temperature of actual glass transition and post-reaction are given as a function of curing time at 180 °C. The correlation between actual glass transition temperature and degree of cure is derived. KW - Prepreg KW - Carbon fibre KW - Glass transition KW - Degree of curing KW - DSC KW - TMDSC PY - 2013 DO - https://doi.org/10.1016/j.polymertesting.2013.07.007 SN - 0142-9418 VL - 32 IS - 7 SP - 1261 EP - 1272 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-29067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von der Ehe, Kerstin A1 - Jaunich, Matthias A1 - Böhning, Martin A1 - Goering, Harald A1 - Wolff, Dietmar T1 - Detection of structural changes of (U)HMW-PE induced by gamma irradiation T2 - 14th International conference "Polymeric materials" - P.2010 (Proceedings) T2 - 14th International conference "Polymeric materials" CY - Halle (Saale), Germany DA - 2010-09-15 PY - 2010 SN - 978-3-86829-282-4 SP - 1 EP - 6 PB - Druck-Zuck GmbH CY - Halle / Saale AN - OPUS4-21997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias T1 - Dichtungsverhalten bei niedrigen Temperaturen - Untersuchung der unteren Temperatureinsatzgrenze von Elastomerdichtungen - N2 - Elastomere werden vielfach in Produkten eingesetzt, die bei verschiedenen Temperaturen verwendet werden. O-Ringe sind kostengünstige Dichtelemente, die allerdings für die Funktionsfähigkeit und Sicherheit eines Produkts entscheidend sein können. Die untere Temperatur-einsatzgrenze ist dabei relevant und aus wissenschaftlicher Sicht nicht allgemein gültig zu definieren, da diese einerseits durch die Änderungen der Materialeigenschaften im Zuge des Gummi-Glas-Übergangs definiert werden, die Temperaturlage dieses Übergangs jedoch sehr stark von den jeweiligen Einsatzbedingungen (z.B. Frequenz) abhängt. Dadurch ergeben sich große Unterschiede zwischen statischen und dynamischen Anwendungen. Verschieden Untersuchungen sollen vorgestellt und interpretiert werden, um das Auditorium auf verschiedene Herausforderungen aufmerksam zu machen und Lösungsansätze vorzustellen. T2 - ISGATEC Forum Werkstoffe 2019 CY - Mannheim, Germany DA - 03.12.2019 KW - Dichtung KW - O-Ring KW - Tiefe Temperaturen KW - Versagenstemperatur PY - 2019 AN - OPUS4-49983 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias T1 - Dichtungsverhalten bei niedrigen Temperaturen - Untersuchung der unteren Temperatureinsatzgrenze N2 - Elastomere werden vielfach in Produkten eingesetzt, die bei verschiedenen Temperaturen verwendet werden. Dabei sind O-Ringe kostengünstige Dichtelemente, die allerdings für die Funktionsfähigkeit und Sicherheit eines Produkts entscheidend sind. Die untere Temperatureinsatzgrenze ist dabei durchaus relevant und aus wissenschaftlicher Sicht nicht allgemeingültig zu definieren, da diese einerseits durch die Änderungen der Materialeigenschaften im Zuge des Gummi-Glas-Übergangs definiert werden, die Temperaturlage dieses Übergangs jedoch sehr stark von den jeweiligen Einsatzbedingungen (z.B. Frequenz) abhängt. Dadurch ergeben sich große Unterschiede zwischen statischen und dynamischen Anwendungen. Verschiedene Untersuchungen sollen vorgestellt und interpretiert werden, um das Auditorium auf verschiedene Herausforderungen aufmerksam zu machen und Lösungsansätze vorzustellen... T2 - ISGATEC O-Ring Forum CY - Mannheim, Germany DA - 20.06.2018 KW - Dichtung KW - Glasübergang KW - O-Ring KW - Druckverformungsrest KW - Leckagerate PY - 2018 AN - OPUS4-45299 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Chatzigiannakis, E. A1 - Beckmann, Jörg A1 - Wachtendorf, Volker A1 - von der Ehe, Kerstin A1 - Braun, Ulrike A1 - Jaunich, Matthias A1 - Schade, U. A1 - Wolff, Dietmar T1 - Discoloration Effects of High-Dose gamma-Irradiation and Long-Term Thermal Aging of (U) HMW-PE JF - International Journal of Polymer Science N2 - Two polyethylene types with ultra-high (UHMWPE) and high molecular weight (HMW-PE) used as neutron radiation shielding materials in casks for radioactive waste were irradiated with doses up to 600 kGy using a 60Co gammasource. Subsequently, thermal aging at 125∘C was applied for up to one year. Degradation effects in the materials were characterized using colorimetry, UV-Visspectroscopy, IR spectroscopy, and DSC. Both materials exhibited a yellowing upon irradiation.The discoloration of UHMW-PE disappeared again after thermal aging.Therefore, the yellowing is assumed to originate fromannealable color centers in the formof free radicals that are trapped in the crystalline regions of the polymer and recombine at elevated temperatures. For the antioxidantcontaining HMWPE, yellowing was observed after both irradiation and thermal aging. The color change was correlated mainly to decomposition products of the antioxidant in addition to trapped radicals as in UHMW-PE. Additionally, black spots appeared after thermal aging of HMW-PE. KW - Irradiation KW - UHMWPE KW - Colour center KW - Yellowness index PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-423992 DO - https://doi.org/10.1155/2017/1362491 SN - 1687-9422 VL - 2017 IS - Article ID 1362491 SP - 1 EP - 10 PB - Hindawi AN - OPUS4-42399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Druckverformungsrest bei tiefen Temperaturen T2 - Technomer 2013 - 23. Fachtagung über Verarbeitung und Anwendung von Polymeren N2 - Für Elastomenwerkstoffe im Allgemeinen und im Bereich der Dichtungstechnik im Besonderen ist der Druckverformungsrest eine wichtige Kenngröße zur Beurteilung der Eignung eines Werkstoffs bzw. der Funktion eines Bauteils. Er ermöglicht eine Einschätzung des zeitabhängigen Rückstellverhaltens eines Werkstoffs nach Deformation. Dieses ist für Dichtungen von besonderer Bedeutung, da der Test deren Einbauzustand nachstellt. Oft wird er, bei der Prüfung unter erhöhten Temperaturen, zur Beurteilung des Alterungsverhaltens verwendet und kann anhand eines definierten Versagenskriteriums zur Lebensdauerabschätzung eingesetzt werden. Bei tiefen Temperaturen dient er dazu, die limitierende Einsatztemperatur zu bestimmen. Dabei spielt eine Alterung im eigentlichen Sinne nur eine untergeordnete Rolle, wohl aber physikalische Effekte wie Tieftemperaturkristallisation und Glasübergang. Diese Effekte sind weit weniger durch lange Lagerzeiten beeinflusst als die eigentliche Alterung. Die Versuchsdurchführung unterscheidet sich je nach angewandter Norm und kann einen deutlichen Einfluss auf den Druckverformungsrest haben. Alle standardisierten Methoden sind aufgrund der langen Lagerzeiten relativ langwierig und erfordern das regelmäßige Eingreifen durch den Prüfer. Zusätzlich sehen einige Methoden nur die Bestimmung eines einzelnen Wertes nach einer definierten Zeit vor. Um die Messungen zu beschleunigen wurde eine Methode entwickelt, die automatisch die erforderlichen Messungen bei mehreren Temperaturen durchführt. Dazu wird ein Prüfgerät der Dynamisch Mechanischen Analyse verwendet, das kontinuierlich die Deformation während eines frei programmierbaren Temperaturzyklus misst, wodurch eine sehr große Datenmenge verfügbar ist. Ein Vergleich der neuen Methode mit den Ergebnissen des nach ISO 815 genormten Messprinzips ergibt eine gute Übereinstimmung. Ergebnisse der neuen Methode werden vorgestellt und die Vorzüge der kontinuierlichen Datenerfassung, z.B. für die Materialauswahl, diskutiert. Die vorgestellten Ergebnisse beziehen sich zum großen Teil auf die in beschriebenen Untersuchungen und Ergebnisse. T2 - Technomer 2013 - 23. Fachtagung über Verarbeitung und Anwendung von Polymeren CY - Chemnitz, Germany DA - 14.11.2013 PY - 2013 SN - 978-3-939382-11-9 IS - Kapitel V 3.4 SP - 1 EP - 8 AN - OPUS4-29616 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Druckverformungsrest bei tiefen Temperaturen T2 - 23. Fachtagung Technormer T2 - 23. Fachtagung Technormer CY - Chemnitz, Germany DA - 2014-11-14 PY - 2014 AN - OPUS4-30274 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Druckverformungsrest bei tiefen Temperaturen JF - GAK: Gummi, Fasern, Kunststoffe N2 - Der Druckverformungsrest (DVR) stellt insbesondere für Dichtungsanwendungen eine wichtige Kenngröße zur Beurteilung der Eignung eines Elastomers dar. Er ermöglicht die Einschätzung des zeitabhängigen Rückstellverhaltens eines Werkstoffs nach Deformation. Neben der Prüfung bei erhöhten Temperaturen, zur Beurteilung des Alterungsverhaltens, lässt sich bei der Durchführung bei tiefen Temperaturen die limitierende Einsatztemperatur bestimmen. Die Versuchsdurchführung unterscheidet sich je nach angewandter Norm und kann einen deutlichen Einfluss auf den DVR-Wert haben. Um bei tiefen Temperaturen eine schnelle Aussage zu gestatten, ist eine im Vergleich zu genormten Methoden deutlich schneller durchzuführende, automatisierte Methode entwickelt und mit Standardmethoden verglichen worden. Durch kontinuierliche Messung des Druckverformungsrests kann die Kinetik der Materialrückstellung betrachtet und dadurch ein effizienter Materialvergleich und eine effiziente Materialauswahl ermöglicht werden. Compression set (CS) is especially for sealing applications an important parameter for material selection. It allows an assessment of the time dependent recovery after deformation. In addition to testing at elevated temperatures which aims at the evaluation of the ageing behaviour, testing at low temperatures permits the determination of the low working temperature limit. The test procedure varies depending on the applied standard and can show a significant effect on the CS value. In order to allow a quick statement regarding low temperatures an automated procedure being significantly faster realisable in relation to the standardised methods has been developed and compared with standard procedures. Continuous measurement of the compression set allows evaluating the recovery kinetics and therefore an efficient comparison and selection of materials. KW - Druckverformungsrest KW - Elastomere KW - Dichtung KW - O-Ring PY - 2014 SN - 0176-1625 VL - 67 IS - 8 SP - 487 EP - 491 PB - Gupta CY - Ratingen AN - OPUS4-31572 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang A1 - Jaunich, Matthias A1 - Mc Hugh, Jarlath T1 - Dynamic mechanical analysis (DMA) of epoxy carbon-fibre prepregs partially cured in a discontinued autoclave analogue process JF - Polymer testing N2 - Epoxy carbon-fibre prepreg, Hexcel Type 6376 HTS, was investigated using Dynamic Mechanical Analysis (DMA). The DMA characteristic parameters are storage modulus E', loss modulus E' and loss factor tanδ. These parameters are ideally suited to observe the vitrification, referred to as glass transition, resulting from the cross-linking reaction. Detection of the cure state may also be achieved by determining the momentary glass transition temperature of partially cured samples. The consequent use of a multi-frequency measuring regime was used to derive the apparent activation energy for the glass transition process. Different temperature programs were also applied to monitor the curing process directly, as well as to investigate the different states of incomplete cure reached in preceding curing steps. The intention was to provide better understanding of the consequences of an interrupted autoclave curing process and to use DMA to detect the cure state achieved. With DMA, the continuation of an incomplete curing process also can be monitored. DMA measurements up to 300 °C showed, furthermore, that the final glass transition temperature was reduced by thermal degradation at high temperatures. KW - Composites KW - Epoxy KW - Cross-linking KW - Prepreg KW - Degree of cure KW - Glass transition PY - 2015 DO - https://doi.org/10.1016/j.polymertesting.2014.11.004 SN - 0142-9418 VL - 41 SP - 140 EP - 148 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-32325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias T1 - Editorial JF - Polymer Testing N2 - Dear Readers, a new year started for all of us (as I write these lines, possibly it was already some time ago when these lines are finally available) and this is the time for the so-called New Year’s resolutions. Setting goals and changing our behavior as well in a private as in a professional context. For Scientists the resolutions may comprise tasks like finalizing a longago started publication, picking up the loose ends of an application for funding or just bringing the running projects in a greater structure. KW - Editorial KW - Polymer Testing PY - 2019 DO - https://doi.org/10.1016/j.polymertesting.2019.01.010 SN - 0142-9418 VL - 74 SP - A1 PB - Elsevier AN - OPUS4-47406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias T1 - Editorial: Shape memory polymers JF - Polymer Testing N2 - In this editorial the focus lies on the testing of shape memory materials. KW - Shape memory polymer KW - Testing PY - 2017 DO - https://doi.org/10.1016/j.polymertesting.2017.08.019 SN - 0142-9418 VL - 62 SP - A1 PB - Elsevier CY - Oxford AN - OPUS4-41714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - von der Ehe, Kerstin A1 - Wolff, Dietmar A1 - Jaunich, Matthias T1 - Effect of high-dose gamma irradiation on (U)HMWPE neutron shielding materials JF - Radiation Physics and Chemistry N2 - High and ultra-high molecular weight polyethylenes were gamma-irradiated with doses up to 600 kGy. The changes in the material properties were analysed using DSC, DMA, IR spectroscopy, as well as measurements of density and insoluble content. The irradiation led to an increase of the degree of crystallinity because of chain scissions during irradiation, leading to shorter and thus more mobile chains. Both the plateau value of the shear modulus G′ and the insoluble content increased with Irradiation dose, indicating the formation of additional crosslinks. Furthermore, IR spectroscopy revealed irradiation induced oxidation and the formation of double bonds, indicating that some of the hydrogen atoms responsible for the neutron shielding capability have been released. KW - Ultra high molecular weight KW - Polyethylene KW - Gamma irradiation KW - Crosslinking KW - Oxidation PY - 2018 DO - https://doi.org/10.1016/j.radphyschem.2017.02.014 SN - 0969-806X VL - 142 SP - 29 EP - 33 PB - Elsevier AN - OPUS4-42941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Effects of heterogeneous aging in compressed HNBR and EPDM O-ring seals JF - Polymer Degradation and Stability N2 - Seals used in containers for dangerous goods need to maintain leak tightness for several decades. For investigating the change in seal material properties during aging, a comprehensive aging program on both uncompressed and compressed EPDM and HNBR seals was started. In order to obtain results closely related to practical conditions, O-rings with a full-scale cord diameter of 10 mm were aged. However, this set-up can lead to heterogeneous aging caused by diffusion-limited oxidation (DLO) effects. These effects depend on material, dimensions, time and temperature. Heterogeneous aging results in distorted bulk properties such as compression stress relaxation and compression set (CS) suggesting that HNBR has better performance than EPDM at 150 °C but which is not the case at 100 °C. The presence of heterogeneous material properties was shown by hardness measurements across the seal cross-section. If DLO-affected data is excluded, extrapolations of CS data are possible using time-temperature shifts and Arrhenius graphs. Exemplary CS values of 50 % and 80 % would be reached after approx. 10 years and 29 years, respectively for HNBR and after approx. 400 years and 1100 years, respectively for EPDM. KW - Ageing KW - Rubber KW - Compression KW - DLO KW - Extrapolation KW - Lifetime prediction PY - 2016 DO - https://doi.org/10.1016/j.polymdegradstab.2016.01.012 VL - 126 SP - 39 EP - 46 PB - Elsevier Science CY - Oxford AN - OPUS4-35775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Subramani Bhagavatheswaran, E. A1 - Wießner, S. A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Einfluss der Alterung auf dichtungsrelevante Eigenschaften von FKM-, VMQ- und EPDM-Elastomeren T2 - Technomer 2017 N2 - Da Elastomere in vielfältigen Dichtungsanwendungen eingesetzt werden und dabei teilweise großen Einfluss auf die Funktionsfähigkeit und Sicherheit haben, ist der Einfluss der Alterung auf dichtungsrelevante Eigenschaften relevant. Eine strukturierte Untersuchung des Einflusses von verschiedenen Mischungsrezepturen auf die Bauteileigenschaften, das Alterungsverhalten und die Funktion wird vorgestellt. T2 - Technomer 2017 CY - Chemnitz, Germany DA - 09.11.2017 KW - Dichtung KW - Alterung KW - Struktur-Eigenschaftsbeziehung KW - Elastomer PY - 2017 SN - 978-3-939382-13-3 VL - 2017 SP - 41 EP - 41 AN - OPUS4-42844 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias A1 - Stark, Wolfgang T1 - Einfluss der Härtung auf die Materialeigenschaften eines Harnstoffharzes JF - MP materials testing N2 - Über die in der Technik weit verbreitete typisierte Harnstoffformmasse UF 131.5, ein Aminoplast, wird berichtet, dass sie im Zuge der thermisch aktivierten Vernetzungsreaktion wegen "Überhärtung" mangelhafte Eigenschaften annimmt. Zur Verifizierung dieses Effektes werden mithilfe der Ultraschall-Prozesskontrolle gezielt Proben unterschiedlicher Aushärtegrade hergestellt. Sie werden mit verschiedenen Methoden, wie der "Kochprobe" und der Thermoanalyse, charakterisiert und auf ihre Materialeigenschaften untersucht. Dabei zeigt sich ein deutlicher Einfluss der Härtezeit auf die Glasübergangstemperatur der Formmasse. In den mechanischen Eigenschaften ist eine Veränderung allerdings nur in der Schlagzähigkeit festzustellen, die sich mit steigender Härtezeit sogar wesentlich verbessert. PY - 2009 SN - 0025-5300 VL - 51 IS - 11-12 SP - 828 EP - 834 PB - Hanser CY - München AN - OPUS4-20566 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Elastomer seals - overview and development N2 - The talk summarizes the current and future investigations of elastomer seal materials in division 3.4. T2 - IRSN-BAM Symposium Safety of Transport and Storage Packages CY - Online meeting DA - 19.11.2020 KW - Seal KW - Degradation KW - Ageing PY - 2020 AN - OPUS4-51751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jaunich, Matthias A1 - Probst, Ulrich A1 - Schulz, Sebastian A1 - Wolff, Dietmar A1 - Stark, Wolfgang ED - Berger, K.-F. ED - Kiefer, S. T1 - Elastomere - Untersuchung des Tieftemperaturverhaltens im Dichtungseinsatz T2 - Dichtungstechnik Jahrbuch 2014 N2 - Aufgrund ihrer einfachen und zuverlässigen Anwendung werden Elastomere für viele Dichtungsaufgaben eingesetzt. In vielen Anwendungsbereichen, wie z.B. Verkehr, Luftfahrt und Verfahrenstechnik, können während des Einsatzes tiefe Temperaturen auftreten, bei denen die Funktionsfähigkeit der Dichtung erhalten bleiben muss. Daher ist die Untersuchung des Verhaltens von Elastomerdichtungen bei tiefen Temperaturen wichtig, um ihren Temperatureinsatzbereich nach unten abzugrenzen und dadurch einen verlässlichen Betrieb zu sichern. Ziel dieser Arbeit ist es, den sicheren Einschluss von gefährlichen Gütern unter verschiedenen Umgebungsbedingungen und über lange Zeiten zu ermöglichen bzw. die Materialauswahl entsprechend zu steuern. KW - Dichtung KW - Druckverformungsrest KW - Elastomer KW - Glasübergang PY - 2013 SN - 978-3-9811509-7-1 SP - 82 EP - 91 CY - Mannheim AN - OPUS4-29661 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Elastomerprüfung in der Kälte, DVR und Glasübergang T2 - Treffen der Deutschen Kautschukgesellschaft e. V. Bezirksgruppe Ost T2 - Treffen der Deutschen Kautschukgesellschaft e. V. Bezirksgruppe Ost CY - Berlin, Germany DA - 2010-05-27 PY - 2010 AN - OPUS4-21208 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Erroneous or Arrhenius: A Degradation Rate-Based Model for EPDM during Homogeneous Ageing JF - Polymers N2 - To improve the predictive capability of long-term stress relaxation of elastomers during thermo-oxidative ageing, a method to separate reversible and irreversible processes was adopted. The separation is performed through the analysis of compression set after tempering. On the Basis of this separation, a numerical model for long-term stress relaxation during homogeneous ageing is proposed. The model consists of an additive contribution of physical and chemical relaxation. Computer simulations of compression stress relaxation were performed for long ageing times and the results were validated with the Arrhenius treatment, the kinetic study and the time-temperature superposition technique based on experimental data. For chemical relaxation, two decay functions are introduced each with an activation energy and a degradative process. The first process with the lower activation energy dominates at lower ageing times, while the second one with the higher activation energy at longer ageing times. A degradation-rate based model for the evolution of each process and ist contribution to the total system during homogeneous ageing is proposed. The main advantage of the model is the possibility to quickly validate the interpolation at lower temperatures within the range of slower chemical processes without forcing a straight-line extrapolation. KW - Kinetic study KW - Arrhenius KW - TTS KW - Modeling KW - Chemical processes KW - Stress relaxation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512931 DO - https://doi.org/10.3390/polym12092152 SN - 2073-4360 VL - 12 IS - 9 SP - 1 EP - 21 AN - OPUS4-51293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beckmann, Jörg A1 - von der Ehe, Kerstin A1 - Jaunich, Matthias A1 - Schade, U. A1 - Aziz, E. F. A1 - Wolff, Dietmar T1 - Fourier-spektroskopische Untersuchungen im mittleren- und fernen Infrarotbereich an Co-60 bestrahlten und thermisch belasteten ultrahochmolekularen Polyethylen-Proben T2 - DGZfP-Berichtsband N2 - Fourier-Spektroskopische Untersuchungen von hochmolekularem Polyethylen (HMW-PE) und ultrahochmolekularem Polyethylen (UHMW-PE) im Mittleren - und Fernen Infrarotbereich können Veränderungen der molekularen Strukturen nachweisen, die durch Co60 γ-Strahlung und Rekristallisationsprozesse initiiert werden. UHMW-PE und HMW-PE sind im gewählten IR-Bereich unterscheidbar. Die integrale Absorption der B1u – Gitterschwingungen im Fernen Infrarotbereich (THz-Bereich) ermöglichen die quantitative Beschreibung des Kristallinitätsgrades und dessen Abbau. Die Bildung ungesättigter Vinylengruppen und der Abbau ungesättigter Methylengruppen können im Mittleren Infrarotbereich nachgewiesen werden. T2 - DGZfP-Jahrestagung 2014 CY - Potsdam, Germany DA - 26.05.2014 KW - Infrared and far-infrared spectroscopy KW - Polyethylene KW - Co-60 irradiation PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-313317 SN - 978-3-940283-61-0 VL - 148 SP - 1 EP - 7 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-31331 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Goral, Milan A1 - Wolff, Dietmar ED - Gehde, M. ED - Wagenknecht, U. ED - Bloß, P. T1 - Further investigations on the low temperature performance of rubber seals T2 - Technomer 2017 N2 - For many sealing applications low temperature performance is required. The overall understanding of the relevant influences on low temperature performance of rubber seals are summarized and the currently running investigations described. The correlation of the physical material properties with seal performance is studied. This includes as well purely static sealing applications as the performance during/after fast partial relief of seals at low temperatures. T2 - Technomer 2017 CY - Chemnitz, Germany DA - 09.11.2017 KW - Seal KW - Low temperature KW - Rubber KW - Recovery PY - 2017 SN - 978-3-939382-13-3 VL - 2017 SP - 40 EP - 40 AN - OPUS4-42845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trajkovski, B. A1 - Jaunich, Matthias A1 - Müller, W. A1 - Beuer, F. A1 - Zafiropoulos, G. A1 - Houshmand, A. ED - Eppel, S.J. T1 - Hydrophilicity, viscoelastic, and physicochemical properties variations in dental bone grafting substitutes JF - Materials N2 - The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties’ influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone®), synthetic (maxresorb®), and allograft (maxgraft®, Puros®) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone® and maxresorb® blocks showed a slight height decrease in wet state, whereas both maxgraft® and Puros® had an almost identical height increase. In addition, cerabone® and maxresorb® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft® and Puros® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone®, Bio-Oss®, NuOss®, SIC® nature graft) and synthetic DBGS granules (maxresorb®, BoneCeramic®, NanoBone®, Ceros®). The highest level of hydrophilicity was detected in cerabone® and maxresorb®, while Bio-Oss® and BoneCeramic® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new insight into the DBGS differences and their importance for successful clinical results. KW - Biomaterials KW - Bone grafting KW - Bone substitutes KW - Hydrophilicity KW - Mechanical analysis PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-439890 DO - https://doi.org/10.3390/ma11020215 SN - 1996-1944 VL - 11 IS - 2 SP - Article 215, 1 EP - 19 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-43989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Goering, Harald T1 - Härtung von Harnstoffformmassen: Die Aussagekraft des Kochversuchs! T2 - 10th International AVK Conference on Reinforced Plastics T2 - 10th International AVK Conference on Reinforced Plastics CY - Stuttgart, Germany DA - 2007-11-05 PY - 2007 AN - OPUS4-16089 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Hoster, B. T1 - In-situ vulcanization monitoring by ultrasonic wave propagation T2 - 8. Kautschuk-Herbst-Kolloquium, 26.- 28.11.2008, Hannover (Proceedings) T2 - 8. Kautschuk-Herbst-Kolloquium CY - Hannover, Deutschland DA - 2008-11-26 KW - Vulcanization KW - Cure monitoring KW - Ultrasound PY - 2008 SP - 133 AN - OPUS4-18574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Hoster, B. T1 - In-situ Vulcanization monitoring by ultrasonic wave propagation T2 - 8. Kautschuk-Herbst-Kolloquium T2 - 8. Kautschuk-Herbst-Kolloquium CY - Hanover, Germany DA - 2008-11-26 PY - 2008 AN - OPUS4-19008 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Pourmand, P. A1 - Wolff, Dietmar A1 - Gedde, U.W. T1 - Influence of ageing on sealability of elastomeric O-rings JF - Macromolecular Symposia N2 - At BAM, which is the federal institute for materials research and testing in Germany, it is one of our tasks to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes the assessment of the service lifetime of elastomeric seals that are part of the container lid system with regard to the requirements for long-term safety (40 years and more) of the containers. Therefore, we started an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) which are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) up to 1.5 years. In order to assess sealability, O-rings are aged in compression by 25 % (corresponding to the compression during service) between plates as well as in flanges that allow leakage rate measurements. For comparison, uncompressed O-rings are aged as well. Further methods characterising seal performance are compression stress relaxation (CSR) reflecting the loss of sealing force of a compressed seal over time, and compression set (CS) which represents the recovery behaviour of a seal after release from compression. Additionally, hardness is measured for information about the change of mechanical properties. The experimental results indicate that while hardness, CSR and CS show considerable degradation effects, the leakage rate stays relatively constant or even decreases until shrinkage combined with the loss of resilience of the aged seal leads to leakage. This demonstrates that static leakage rate, which is the only available direct seal performance criterion, has only limited sensitivity towards the degradation of the seal material. CS data is extrapolated using time-temperature shifts and Arrhenius graphs. An exemplary CS of 50 % would be reached after approx. 1.2, 17 and 29 years at 60 °C for HNBR, EPDM and FKM respectively. T2 - PolymerTec 2016 CY - Merseburg, Germany DA - 15.06.2016 KW - Compression KW - Leakage KW - Degradation KW - Rubber KW - Lifetime PY - 2017 DO - https://doi.org/10.1002/masy.201600157 SN - 1022-1360 SN - 1521-3900 VL - 373 IS - 1 SP - UNSP 1600157, 1 EP - 10 PB - WILEY-V C H VERLAG GMBH CY - Weinheim AN - OPUS4-40958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Influence of Ageing on Sealability of HNBR, EPDM and FKM O-rings T2 - International Sealing Conference 2016 N2 - At BAM, which is the federal institute for materials research and testing in Germany, it is one of our tasks to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes assessment of elastomeric seals applied in the containers. Besides examining the low-temperature behaviour and irradiation effects of elastomeric seals, it is our goal to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. Therefore, we started an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) which are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) up to 1 year. In order to assess sealability, O-rings are aged in compression by 25 % (corresponding to the compression during service) between plates as well as in flanges that allow leakage rate measurements. For comparison, uncompressed O-rings are aged as well. Further methods characterising seal performance are compression stress relaxation (CSR) reflecting the loss of sealing force of a compressed seal over time, and compression set (CS) which represents the recovery behaviour of a seal after release from compression. Additionally, hardness is measured for information about the change of mechanical properties. The experimental results indicate that while hardness, CSR and CS show considerable degradation effects, the leakage rate stays constant or even decreases until shrinkage and the loss of resilience of the aged seal leads to the formation of a leakage path. This indicates that static leakage rate, which is the only available direct seal performance criterion, has only limited sensitivity for the degradation of the seal material. T2 - International Sealing Conference CY - Stuttgart, Germany DA - 12.10.2016 KW - Rubber KW - Seal KW - Degradation PY - 2016 SN - 978-3-8163-0674-9 VL - 2016 SP - 551 EP - 563 PB - VDMA AN - OPUS4-38014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Influence of gamma irradiation on low temperature properties of rubber seal materials JF - Kautschuk, Gummi, Kunststoffe (KGK) N2 - In many fields the function of seal materials is required at low temperatures. Therefore the understanding of failure mechanisms at low temperatures is of high importance. In some applications elastomeric seals are used in environments with increased irradiation backgrounds, as e.g. in containers for radioactive waste. This paper reports on the influence of gamma irradiation on the low temperature properties of different fluorocarbon rubber (FKM) materials. The samples were irradiated with gamma doses of up to 600 kGy and the induced changes of material properties were tested by methods sensitive to the rubber-glass transition, like DSC and DMA. Additionally, compression set measurements were performed to give information about recovery behaviour at low temperatures. KW - Seal KW - O-ring KW - Low temperature KW - Gamma irradiation KW - Compression set KW - Dichtungen KW - O-Ringe KW - Tiefe Temperatur KW - Gamma-Bestrahlung KW - Druckverformungsrest PY - 2015 SN - 0948-3276 SN - 0022-9520 VL - 68 IS - 6 SP - 85 EP - 89 PB - Hüthig CY - Heidelberg AN - OPUS4-33552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Wolff, Dietmar T1 - Influence of partial release on sealing performance of elastomer O-rings at low temperatures T2 - Technomer 2015 - 24. Fachtagung über Verarbeitung und Anwendung von Polymeren N2 - For many sealing applications rubbers are applied due to their special material properties and easy use. In many applications as e.g. in aviation, traffic or process technology the material can be exposed to low temperatures during operation. Therefore it is important to know the material behaviour at those low temperatures to determine the temperature range that allows a safe operation of the seal. As rubbers are used as main sealing materials for containers for low and intermediate level radioactive waste and as additional component to metal seals in spent fuel and high acitve waste containers, a comprehensive elastomer investigation program is run at BAM. This program comprises investigations of elastomer overall performance, durability, influence of gamma irradiation and low temperature behaviour. In this paper we focus on the behaviour of elastomer seals below ambient temperatures after a fast partial release. Despite the primarily static application conditions of many seals their behaviour after partial compression release is of interest with regard to potential decrease of leak-tightness. For this investigation a special setup was designed which allows the partial release of compressed seal systems at different temperatures accompanied by leakage rate measurements. The results for FKM seals are presented and discussed. T2 - Technomer 2015 - 24. Fachtagung über Verarbeitung und Anwendung von Polymeren CY - Chemnitz, Germany DA - 12.11.2015 KW - O-ring KW - Glass-rubber transition KW - Compression set KW - Partial release PY - 2015 SN - 978-3-939382-12-6 SP - P 3.7, 1 EP - 6 CY - Chemnitz AN - OPUS4-35130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Wolff, Dietmar T1 - Influence of partial release on sealing performance of elastomer O-Rings at low temperatures T2 - Technomer 2015 T2 - Technomer 2015 CY - Chemnitz DA - 2015-11-12 PY - 2015 AN - OPUS4-34935 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Wolff, Dietmar T1 - Influences on the low temperature sealability of elastomer O-rings T2 - International Rubber Conference 2015 T2 - International Rubber Conference 2015 CY - Nuremberg, Germany DA - 2015-06-29 PY - 2015 AN - OPUS4-33752 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, T. A1 - Wolff, Dietmar T1 - Influences on the low temperature sealability of elastomer O-rings T2 - IRC 2015 - International rubber conference / DKT 2015 - Deutsche Kautschuk-Tagung N2 - For many sealing applications rubbers are applied due to their special material properties and easy use. In many applications, e.g. in aviation, traffic or process technology the material can be exposed to low temperatures during Operation. Therefore it is important to know the material behaviour at those low temperatures to determine the temperature range that allows a safe Operation of the seal. As rubbers are used as main sealing materials for Containers for low and intermediate level radioactive waste and as additional component to metal seals in spent fuel and high active waste Containers, a comprehensive elastomer investigation program is run at BAM. This program comprises investigations of elastomer overall performance, durability, influence of gamma irradiation and low temperature behaviour. In this paper we focus on the behaviour of elastomer seals at low temperatures with regard to potential decrease of leak-tightness as material properties of rubbers are strongly temperature dependent. But additionally to the investigation presented in the past which considered the material properties of new materials and the seal behaviour under purely static conditions [1, 2] we now focus on irradiated materials and on the sealing performance after a fast partial release of the compressed seal. For the investigations different materials were used, e.g. fluorocarbon (FKM) and ethylenepropylene-diene (EPDM) rubber. To determine the effect of gamma irradiation some samples were irradiated and studied by several thermo-analytical methods and compression set. For the investigation of the seal performance under non static conditions we decided to design a new measurement setup which allows for a small flange deflection and simultaneous leakage rate measurement at low temperatures. T2 - IRC 2015 - International rubber conference CY - Nuremberg, Germany DA - 29.06.2015 KW - O-ring KW - Glass-rubber transition KW - Irradiation KW - Compression set PY - 2015 SP - 1 EP - 7 AN - OPUS4-33784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Wolff, Dietmar T1 - Insights for lifetime predictions of O-ring seals from five-year long-term aging tests JF - Polymer Degradation and Stability N2 - O-rings made of HNBR, EPDM and FKM were aged in the compressed and uncompressed state at 150 °C, 125 °C, 100 °C, 75 °C, 60 °C and 23 °C for aging times of up to five years. Hardness was measured and increased with aging time and temperature for HNBR and EPDM, but it remained practically constant for FKM. Indenter modulus measurements were performed on the lateral O-ring surface (that was free of DLO effects) to assess an influence of the compression during aging, but none was detected. The equilibrium compression set (CS) exhibited faster and stronger degradation than hardness and was used for lifetime predictions using the time-temperature superposition (TTS) principle. With an end-of-lifetime criterion of 70 % CS, lifetimes of 4.5 years, 50 years and 526 years at 75 °C were estimated for HNBR, EPDM and FKM, respectively. The activation energies derived from an Arrhenius plot of the shift factors from the TTS were 85 kJ/mol, 99 kJ/mol and 78 kJ/mol for HNBR, EPDM and FKM, respectively, revealing that a higher activation energy does not necessarily mean that the material has a higher lifetime at lower temperatures. Furthermore, the measured lifetime of EPDM O-rings at 100 °C (5 years) was compared to that predicted on the basis of the lifetime at 150 °C as well as 125 °C using the corresponding shift factors. The error of the prediction was only ± 4 %. However, this precise prediction could only be achieved using the five-year long-term aging data. When using only data from aging times up to 0.5 years and 2 years, the lifetime of EPDM O-rings at 100 °C was underestimated by 31 % and 22 %, respectively. KW - HNBR KW - EPDM KW - FKM KW - DLO KW - Hardness KW - Compression set KW - Rubber KW - Elastomer KW - Degradation PY - 2020 DO - https://doi.org/10.1016/j.polymdegradstab.2020.109278 VL - 179 SP - 109278 PB - Elsevier Ltd. AN - OPUS4-51060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Investigating Low Temperature Properties of Rubber Seals T2 - Waste Management Symposia 2013 T2 - Waste Management Symposia 2013 CY - Phoenix, AZ, USA DA - 2013-02-24 PY - 2013 AN - OPUS4-27795 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Stark, Wolfgang T1 - Investigating low temperature properties of rubber seals T2 - WM2013 Conference (Proceedings) N2 - To achieve the required tightness levels of Containers for low and intermediate level radioactive wastes rubbers are widely applied as main sealing materials. The save encapsulation of the radioactive Container contents has to be guaranteed according to legislation and appropriate guidelines for long storage periods as well as down to temperatures of-40 °C during transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly influenced by temperature. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Therefore, rubbers are normally used above their glass transition but the minimum working temperature limit is not defrned precisely, what can cause problems during application. The temperature ränge where full functionality is possible is strongly dependent on the application conditions and the material. For this investigation mainly ethylene propylene diene (EPDM) and fluorocarbon rubbers (FKM) were selected as they are often used for radioactive waste Containers. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are typically used for the determination of the temperature ränge of the glass transition process. The standardized compression set measurement according to ISO 815 is common for investigation of rubber sealing materials as the test simulates the seal behaviour after release. To reduce the test time of the Standard tests a faster technique giving the same information was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test Setup to compare it with the results of the other tests. The experimental Setup is capable of measuring the leakage rate at low temperatures by the pressure rise method. A model was developed that allows calculating the minimum working temperature limit of a seal by combining the results of the applied methods. T2 - WM2013 Conference CY - Phoenix, Arizona, USA DA - 24.02.2013 PY - 2013 SN - 978-0-9836186-2-1 SP - 1 EP - 12 CY - Phoenix, Arizona, USA AN - OPUS4-28853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wolff, Dietmar A1 - Jaunich, Matthias A1 - Stark, Wolfgang T1 - Investigating the performance of rubber seals at low temperatures T2 - IHLRWM 2013 - 14th International high-level radioactive waste management conference (Proceedings) N2 - Rubbers are widely used as main sealing materials for Containers for low and intermediate level radioactive waste and as additional component to metal seals in spent fuel and high active waste containers. The save enclosure of the radioactive container inventory has to be guaranteed according to legislation and appropriate guidelines for long term storage periods as well as down to temperatures of -40 °C for transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is necessary to ensure a proper material choice which is certainly also influenced by additional factors as e.g. the aging behavior. T2 - 14th International high-level radioactive waste management conference CY - Albuquerque, New Mexico, USA DA - 28.04.2013 KW - Rubber seals KW - Elastomers KW - Compression set KW - Low temperature KW - Leakage rate PY - 2013 SN - 978-1-62748-644-6 SP - 1 EP - 7(Paper # 6888) PB - Omnipress AN - OPUS4-28530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Investigation of Elastomer Seal Behavior for Transport and Storage Packages T2 - Workshop PURAM - BAM T2 - Workshop PURAM - BAM CY - Paks, Hungary DA - 2014-03-18 PY - 2014 AN - OPUS4-30674 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Stark, Wolfgang A1 - Völzke, Holger T1 - Investigation of elastomer seal behavior for transport and storage packages T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials (Proceedings) N2 - Rubbers are widely used as main sealing materials for containers for low and intermediate level radioactive waste and as additional component to metal seals in spent fuel and high active waste containers. According to appropriate guidelines and regulations safe enclosure of the radioactive container contents has to be guaranteed for long storage periods as well as down to temperatures of -40 °C for transportation. Therefore the understanding of seal behavior is of high importance. In this paper we focus on the behavior of elastomer seals at low temperatures with regard to poten-tial decrease of leak-tightness. In addition, changes in material properties due to aging effects over long periods of time and their influence on the seal performance is investigated. It is known that material properties of rubbers are strongly temperature dependent. At low tempera-tures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cool-ing, the material changes from rubber-like entropy-elastic to stiff energy-elastic behavior, that al-lows nearly no strain or retraction due to the glass transition. Hence rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely. Aging of elastomer seals is important, as possible dynamic loads may have to be considered during the whole interim storage period (so far approved in Germany for up to 40 years) and for transporta-tion after storage. For the investigations, fluorocarbon (FKM) and ethylene-propylene-diene (EPDM) rubbers were selected as they are often used in radioactive waste containers. Some materials were purchased from a commercial seal producer and some materials were compounded and cured at BAM. The elastom-ers where studied by several thermo-analytical methods and compression set to characterize the material behavior at low temperatures. Additionally component tests were performed to determine the breakdown temperature of the sealing function of complete elastomer O-rings. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 PY - 2013 SP - Paper 227, 1 EP - 8 PB - Omnipress AN - OPUS4-30377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Investigation of Elastomer Seal Behavior for Transport and Storage Packages T2 - 17th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2013) T2 - 17th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2013) CY - San Francisco, CA, USA DA - 2013-08-18 PY - 2013 AN - OPUS4-29044 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Wolff, Dietmar T1 - Investigation of Elastomer Seal Behaviour for Transport and Storage Packages T2 - Ramtrans 2015, 10th International Conference on Radioactive Materials Transport and Storage T2 - Ramtrans 2015, 10th International Conference on Radioactive Materials Transport and Storage CY - Oxford, United Kingdom DA - 2015-05-19 PY - 2015 AN - OPUS4-33454 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Wolff, Dietmar T1 - Investigation of elastomer seal behaviour for transport and storage packages T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage (Proceedings) N2 - According to the relevant guidelines and regulations, the safe enclosure of radioactive Container contents has to be guaranteed for long storage periods as well as down to temperatures of -40 °C during transportation. As rubbers are widely used as the main sealing materials for Containers for low- and intermediate-level radioactive waste and as additional component to metal seals in spent fuel and high active waste Containers, a comprehensive eiastomer investigation Programme is in place at BAM. This Programme comprises investigations of overall eiastomer performance, durability, influence of gamma irradiation and low temperature behaviour. In this paper we focus on the behaviour of eiastomer seals at low temperatures with regard to the potential increase in leakage as material properties of rubbers are strongly temperature-dependent. During continuous cooling, the material behaviour of elastomers changes in the rubber-glass transition temperature ränge from rubberlike entropy-elasticity to stiff energy-elasticity, allowing for almost no strain or retraction. Hence rubbers are normally used above their rubber-glass transition but the minimum limit at which they work has not been defined precisely. For the investigations, fluorocarbon (FKM) and ethylene-propylene-diene (EPDM) rubbers were selected, as they are often used in radioactive waste Containers. The elastomers were studied using several thermoanalytical methods and compression set. The results were compared with component tests to determine the temperature at which the sealing function of O-rings made of eiastomer breaks down. In addition to these results, under static conditions we designed a new measurement set-up which allows for a small deflection of the flange and simultaneous leakage rate measurement at low temperatures. T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - O-ring KW - Glass-rubber transition KW - Irradiation KW - Compression set PY - 2015 SP - 1 EP - 10 AN - OPUS4-33489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang A1 - Jaunich, Matthias T1 - Investigation of ethylene/vinyl acetate copolymer (EVA) by thermal analysis DSC and DMA JF - Polymer testing N2 - Two types of commercially applied Ethylene/Vinyl Acetate Copolymers (EVA) for encapsulation of photovoltaic modules were investigated by the thermal analysis methods of Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) in the temperature range from -150 °C to 200 °C. Glass transition, crystal melting and cross-linking were analyzed. The aims of the investigations were to gain more information for incoming goods control and to get information about the whole temperature dependent material properties in the investigated temperature range, starting at very low temperatures up to the crosslinking temperature region. KW - EVA KW - Thermal analysis KW - DSC KW - DMA KW - Glass transition KW - Crystal melting KW - Cross-linking PY - 2011 DO - https://doi.org/10.1016/j.polymertesting.2010.12.003 SN - 0142-9418 VL - 30 IS - 2 SP - 236 EP - 242 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-23206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Jaunich, Matthias ED - van Breugel, K. ED - Koleva, D. ED - Beek, T. T1 - Investigation of long-term behaviour of elastomeric seals for transport and storage packages T2 - The Aging of Materials and Structures - Towards Scientific Solutions for the Ageing of Our Assets N2 - Elastomers are widely used as the main sealing materials in Containers for low- and intermediate-level radioactive waste and as an additional component fo metal seals in spent-fuel and high-level waste containers. According to appropriate guidelines and regulations, safe enclosure of the radioactive container contents has to be guaranteed for lengthy storage periods of at least 40 years. Therefore, the understanding of seal ageing behaviour is of high importance and has to be considered with regard to possible dynamic events taking place during transport after storage. An accelerated ageing approach for compressed seals is presented, as well as some first results. KW - O Ring KW - Ageing KW - Rubber seal PY - 2018 SN - 978-3-319-70192-9 DO - https://doi.org/10.1007/978-3-319-70194-3_2 SP - 17 EP - 25 PB - Springer AN - OPUS4-43248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang A1 - Jaunich, Matthias A1 - Bohmeyer, W. A1 - Lange, K. T1 - Investigation of the crosslinking behaviour of ehtylene vinyl acetate (EVA) for solar cell encapsulation by rheology and ultrasound JF - Polymer testing N2 - EVA is a widely used material for the encapsulation of photovoltaic modules. It melts at elevated temperatures, and seals the module before it is crosslinked at temperatures above 130 °C by a peroxide-initiated crosslinking reaction. EVA has good optical properties necessary for application in solar modules. For process optimization and quality management, a method for the quick and reliable characterization of EVA crosslinking behaviour is of great value. Here, the practicability of ultrasound for online crosslinking monitoring is demonstrated. A sound velocity increase of about 8 m/s during the crosslinking reaction is found. The ultrasound results are compared with rheometer measurements performed with a curemeter typically used for the investigation of rubber crosslinking. KW - Ethylene vinyl acetate KW - EVA KW - Crosslinking KW - Ultrasound KW - Rheology KW - Curemeter KW - DSC PY - 2012 DO - https://doi.org/10.1016/j.polymertesting.2012.07.004 SN - 0142-9418 VL - 31 IS - 7 SP - 904 EP - 908 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-26291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias A1 - Böhning, Martin A1 - Braun, Ulrike A1 - Teteris, G. A1 - Stark, W. T1 - Investigation of the curing state of ethylene/vinyl acetate copolymer (EVA) for photovoltaic applications by gel content determination, rheology, DSC and FTIR JF - Polymer Testing N2 - The cure behaviour of a specific ethylene vinyl acetate material as used for encapsulation of photovoltaic modules was analysed by rheometer, differential scanning calorimetry and Fourier transform infrared spectroscopy to test for a suitable replacement for the laborious determination of gel content. The results show that all applied methods are capable of describing the effects of the cross-linking process. Some provide results very similar to those yielded by analysis of the insoluble content, but the question remains as to whether indirect methods should be preferred over the direct measurement of physical properties, e.g. as performed by the curemeter. A material stored for one year was also tested to demonstrate the effect of extended storage on cure behaviour and how this is detected by different methods. This complements the other methods, which were clearly able to detect the different cure behaviour of the aged EVA, whereas determination of the gel content could not. KW - Photovoltaic cell encapsulation KW - EVA KW - Incoming goods control KW - Insoluble content KW - Rheometer PY - 2016 DO - https://doi.org/10.1016/j.polymertesting.2016.03.013 SN - 0142-9418 VL - 52 IS - 1 SP - 133 EP - 140 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-35918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias T1 - Investigation of the low-temperature performance of rubber seals N2 - For many sealing applications rubbers are applied due to their special material properties and easy use. In many applications as e.g. in aviation, traffic or process technology the material can be exposed to low temperatures during operation. Therefore, it is important to know the material behaviour at those low temperatures to determine the temperature range that allows a safe operation of the seal. In this work, we focus on the behaviour of elastomer seals at low temperatures with regard to potential decrease of leak-tightness or catastrophic seal failure of O-ring rubber seals. This is required as material properties of rubbers are strongly temperature dependent but their temperature application range is not always clearly defined. Based on previous investigations which considered the physical material properties and the seal behaviour under purely static conditions we widen the focus on the sealing performance after a fast partial relief of compressed seals and additional materials. For the investigations, different typical rubber seal materials were used as e.g. fluorocarbon (FKM), ethylene propylene diene (EPDM) and hydrogenated acrylonitrile-butadiene (HNBR) rubber. The correlation of the physical material properties with seal performance is studied. This includes as well purely static sealing applications as the performance during/after fast partial relief of seals at low temperatures. T2 - Polymertec 2018 CY - Merseburg, Germany DA - 13.06.2018 KW - Seal KW - Low temperature KW - Leakage PY - 2018 AN - OPUS4-45214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Investigation of the time and temperature dependent behavior of metal seals in radioactive waste containers T2 - Proceedings of the ASME 2018 Pressure Vessels an piping Conference N2 - The Bundesanstalt für Materialforschung und –Prüfung (BAM) runs an investigation program on the long-term behavior of multi-component metal seals. Such seals are used in a wide area of applications including transport and storage casks for spent nuclear fuel and high level radioactive waste. The seal function is mainly based on the compression of the inner helical spring, which generates the necessary seal force to keep the sealing surfaces in close contact. This in turn leads to a plastic deformation of the outer jacket of the seal, comprised of highly ductile aluminum or silver that adapts to the sealing surfaces of cask body and bolted lid, thus providing high Level leak tightness. In Germany, those casks are licensed for Interim storage periods of up to 40 years or more if extended Interim storage would become necessary before a final repository is available. Thus, the sealing performance has to be evaluated, including factors like elevated temperature due to decay heat or mechanical loads due to transport under normal as well as accident conditions. Long-term investigations at BAM have been running over the last nine years to identify and evaluate the seal performance by measuring the remaining seal force, the useable resilience and the leakage rate after various time intervals at temperatures ranging from room temperature up to 150 °C. It was found that the seal force and useable resilience decrease with time and temperature, caused by creep deformation of the outer jacket. In order to obtain an analytical description for the seal behavior and to achieve more information on the material behavior under application conditions a comprehensive investigation program with Focus on aluminum as outer jacket material was launched. The program includes material investigations such as compression and tension creep tests with representative basic materials. An additional test setup allows for the continuous measurement of the remaining seal force at temperatures of up to 150 °C. Furthermore, seal segments are compressed and stored in heating chambers, thus producing segments at different stages of the aging process. The segments are investigated regarding the development of the contact area width, jacket thickness and microstructural changes. This data will be used to develop material models and an analytical description of the time and temperature dependent long-term sealing behavior. This paper explains the current status of gained test results and modelling approaches and closes with an outlook to the future Project plans. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 SP - PVP2018-84584, 1 EP - 6 AN - OPUS4-46110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Investigation programme for evaluation and prediction of the long-term behaviour of Helicoflex® metal seals T2 - 48th Annual Meeting on Nuclear Technology (AMNT 2017) Proceedings N2 - In Germany, for the transport and storage of spent nuclear fuel, casks with double closure lid systems are used, which are equipped with Helicoflex® metal seals. The original interim storage period for these casks was planned to be 40 years. However, recent political developments indicate that a storage time of more than 80 years might be necessary. Therefore, the current storage licenses have to be renewed in due course, which requires extended knowledge of the long-term behaviour of all cask components. At the Bundesanstalt für Materialforschung und -prüfung (BAM), metal seals have been investigated after ageing at temperatures between room temperature and 150 °C for up to 7 years. At regular intervals the seals have been tested for leakage rate as well as for their mechanical behaviour. From these tests pronounced influence of ageing could be shown which results in the decrease of the seal force and the useable resilience. The main reason attributed to these performance changes is the increasing permanent deformation of the outer layer of the seal due to creep. So far, an explicit analytical description of the long-term behaviour that could be used for predictions exceeding the tested ageing times and temperatures was not suitable. In addition to the component tests that were already conducted, a comprehensive investigation programme has been started to describe the mechanical behaviour of the individual seal components. The individual seal components are tested regarding different material characteristics including creep, deformation and microstructural properties. The comparability of the material characterization is ensured by comparing the basic raw material of the specimen with the actual component material. Furthermore, detailed investigations of the time and temperature dependent deformation behaviour are realized by ageing seal segments at multiple temperatures for different periods of time and employing standardized tests. By analysing the acquired data in combination with the ongoing long-term component tests a dataset for analytical prediction of the long-term behaviour of the seals is intended for an extended period of time under a certain temperature regime. T2 - 48th Annual Meeting on Nuclear Technology (AMNT 2017) CY - Berlin, Germany DA - 16.05.2017 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2017 SP - 1 EP - 7 AN - OPUS4-43418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Zencker, Uwe A1 - Wolff, Dietmar T1 - Investigations at BAM on Fuel Cladding Integrity and DPC Seal Performance N2 - The presentation provides an update on preliminary results from research projects in the area of long term performance of metal seals and fuel rod integrity as safety relevant components of spent fuel transport and storage casks for spent nuclear fuel. T2 - Extended Storage Collaboration Program (ESCP) winter meeting 2022 CY - Charlotte, NC, USA DA - 07.11.2022 KW - Metal seal KW - Fuel cladding KW - Ring compression test KW - Brittle failure PY - 2022 AN - OPUS4-56400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Investigations of Aged Metal Seals for Interim Storage N2 - The storage of spent fuel and high level radioactive waste in Germany is performed in interim storage containers with double lid systems. The lids are bolted and equipped with metal seals (e.g. Helicoflex®) to ensure the safe enclosure of the inventory. The used metal seals have a layered structure consisting of three components as can be seen schematically in the cross-sectional view in Fig. 1. In the center a helical spring is positioned that is surrounded by two C-shaped jackets and is mainly responsible for generation of the required restoring force. The inner jacket is made of stainless steel and homogenizes the restoring force of the helical spring. The outer jacket is made of silver or aluminium which both are soft metals in comparison to the contact partners (lid and container body). During bolting of the lid to the container body the seal is compressed. The generated restoring force of the helical spring causes a plastic deformation of the outer jacket and adapts to the surfaces of the lid and the container body. Hence, leakage paths are closed and the sealing function is generated. Typical durations for existing interim storage licenses in Germany are 40 years, but it can be expected that they have to be extended to longer periods as a final repository will not be available before the end of the running licence periods. This extension of license periods requires a solid understanding of the long-term behaviour of the seals under storage conditions. To meet this challenge long-term investigations have been started at Bundesanstalt für Materialforschung und –prüfung (BAM) in 2009. These tests focus on seals assembled in test flanges which are stored at temperatures ranging from room temperature to 150 °C for accelerated ageing. The aged seals are tested repeatedly after certain ageing steps and the leakage rate as indicator for sealing performance, the remaining seal force, and the useable resilience upon decompression are determined. In the poster an update on the performed investigations in respect to earlier publications (Grelle et al. 2019, Goral et al. 2023) will be given and the implications of the results for resilient long term safety will be presented. Additionally, a focus will be laid on the currently planned further investigations and the question “What is additionally needed for evaluation of an interim storage period extension in regard to the used metal seals?” will be addressed. T2 - safeND2023: Forschungssymposium des BASE CY - Berlin, Germany DA - 13.09.2023 KW - Metal seal KW - Interim storage KW - Ageing PY - 2023 AN - OPUS4-58568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Wolff, Dietmar ED - Grellmann, W. ED - Langer, B. T1 - Investigations of elastomeric seals – Low temperature performance and aging behavior T2 - Deformation and Fracture Behaviour of Polymer Materials N2 - Due to their simple and reliable application, elastomers are used for many tasks. Many fields of application like transport, aviation and process technology, entail low temperatures where proper functionality of the employed seals has to be ensured. Therefore, understanding the low temperature behavior of elastomeric seals is important for safe seal operation to restrict the temperature application range. For all areas of application, the question of seal lifetime is also important for replacement or maintenance intervals. The lifetime is especially important in applications that allow no seal replacement. Since the seal can determine the lifetime of storage in such cases, reliable lifetime estimation is necessary for these applications, and requires an extensive knowledge of the specific aging behavior. KW - Seal KW - Rubber KW - Ageing KW - Replacement PY - 2017 SN - 978-3-319-41877-3 SN - 978-3-319-41879-7 DO - https://doi.org/10.1007/978-3-319-41879-7_30 SN - 0933-033X SN - 2196-2812 VL - 247 SP - 431 EP - 443 PB - Springer Verlag AN - OPUS4-41167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Wolff, Dietmar A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Investigations on the long-term behavior of metal seals for dual purpose casks T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 N2 - In Germany, spent nuclear fuel and high active waste from reprocessing is stored in transport and storage containers with double lid systems that are equipped with metal seals completing the primary sealing barrier. The tasks of the Bundesanstalt für Materialforschung und -prüfung (BAM) within the interim storage licensing procedures ruled by the German Atomic Energy Act include the long-term safety evaluation of the container design regarding the permanently safe enclosure of the inventory. In order to generate a knowledge base for the safety evaluation, research regarding the long-term behavior of the critical components is performed. So far, the containers are licensed for an interim storage period of 40 years. However, due to significant delays in establishing a final repository, the required time span for interim storage is expected to increase significantly. Thus, a widespread investigation program is run to gain systematic data on the long-term behavior of the seals and to develop prediction models. Long-term seal investigations consider the development of their restoring seal force, their useable resilience and their achievable leakage rate caused by aging at temperatures ranging from room temperature up to 150 °C. This year, the total time span of the tests reaches 10 years. Furthermore, seal segments are aged at the selected temperatures for up to 300 days. From these segments additional information on the sealing behavior, changes of the seal contact and the material behavior is gained. This contribution deals with the current results of the long-term seal investigations at BAM. Furthermore, insights of the more in-depth component and material investigations of the metal seals with focus on the seal contact development are discussed and the ongoing work aiming for an analytical description of the thermo-mechanical aging effects on metal seals are presented. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Metal seal KW - Radioactive waste containers KW - Creep KW - Long-term behaviour PY - 2019 SP - 1 EP - 6 AN - OPUS4-49019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Goral, Milan A1 - Wolff, Dietmar T1 - Investigations on the low temperature performance of rubber seals N2 - For many sealing applications rubbers are applied due to their special material properties and easy use. In many applications as e.g. in aviation, traffic or process technology the material can be exposed to low temperatures during operation. Therefore, it is important to know the material behaviour at those low temperatures to determine the temperature range that allows a safe operation of the seal. In this work, we focus on the behaviour of elastomer seals at low temperatures with regard to potential decrease of leak-tightness or catastrophic seal failure of O-ring rubber seals. This is required as material properties of rubbers are strongly temperature dependent but their temperature application range is not always clearly defined. Based on previous investigations which considered the physical material properties and the seal behaviour under purely static conditions we widen the focus on the sealing performance after a fast partial relief of compressed seals and additional materials. For the investigations, different typical rubber seal materials were used as e.g. fluorocarbon (FKM), ethylene propylene diene (EPDM) and hydrogenated acrylonitrile-butadiene (HNBR) rubber. The correlation of the physical material properties with seal performance is studied. This includes as well purely static sealing applications as the Performance during/after fast partial relief of seals at low temperatures. T2 - Technomer 2017 CY - Chemnitz, Germany DA - 09.11.2017 KW - Seal KW - Rubber KW - Low temperature KW - Recovery PY - 2017 AN - OPUS4-42839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Investigations to predict the long term performance of polymeric components of storage casks for radioactive waste N2 - As a Federal institute for materials research and testing it is part of our tasks to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes the investigation of elastomeric seals and polymeric neutron shielding materials used in the containers. In this contribution we would like to present our research focused on the long term performance and associated changes of material properties of elastomeric seals (e.g. EPDM, FKM) and neutron shielding materials ((Ultra) High Molecular Weight Polyethylene) employed in storage casks. Our approach comprises accelerated ageing investigations at elevated temperatures and to some extent investigations of irradiated materials. As the requirements for the extended use of cables in nuclear power plants and for the long term use of cask components are to a certain extent similar, our work might be of interest for the workshop on “Cables ageing in nuclear power plants; R&D current status and forecast”. T2 - Cables ageing in nuclear power plants; R&D current status and forecast CY - Rez, Czech Republic DA - 24.05.2016 KW - Ageing KW - Lifetime evaluation KW - Rubber seal KW - Neutron shielding KW - Storage cask PY - 2016 AN - OPUS4-36337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Goering, Harald T1 - Können UF-Formmassen überhärten? Die Aussage des Kochversuchs! T2 - 1. Wildauer Duromer-Tagung T2 - 1. Wildauer Duromer-Tagung CY - Wildau, Germany DA - 2008-03-11 PY - 2008 AN - OPUS4-16730 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Probst, Ulrich A1 - von der Ehe, Kerstin A1 - Wolff, Dietmar T1 - Langzeituntersuchungen an Behälterwerkstoffen und -komponenten T2 - 4. RAM-Behältersicherheitstage T2 - 4. RAM-Behältersicherheitstage CY - Berlin, Germany DA - 2014-03-26 PY - 2014 AN - OPUS4-30673 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Probst, Ulrich A1 - Schulz, Sebastian A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Völzke, Holger ED - Berger, K.-F. ED - Kiefer, S. T1 - Langzeituntersuchungen an Metalldichtungen mit innen liegendem Federkern und doppelter Ummantelung T2 - Dichtungstechnik Jahrbuch 2014 N2 - In Deutschland werden in Transport- und Lagerbehältern (TLB) wärmeentwickelnde radioaktive Abfälle gegenwärtig über einen Zeitraum von bis zu 40 Jahren zwischengelagert. Aufgrund der Situation der noch nicht abgeschlossenen Endlagersuche werden hier möglicherweise Verlängerungen in Betracht zu ziehen sein. Im Deckeldichtsystem der TLB werden in der Regel Metalldichtungen vom Typ Helicoflex® eines französischen Herstellers verwendet, die aus einem innen liegenden Spiralfederkern und zwei Ummantelungen bestehen. Die Ermittlung der Fliess- und Relaxationseigenschaften der Dichtungskomponenten über den vorgesehenen langen Betriebseitraum sind vor dem Hintergrund des Erhalte eines geforderten hohen Dichtniveaus ein wichtiger Untersuchungsgegenstand. KW - Metalldichtung KW - Langzeiteignung KW - Dichtsysteme KW - Transport- und Lagerbehälter für radioaktive Stoffe PY - 2013 SN - 978-3-9811509-7-1 SP - 1 EP - 11 CY - Mannheim AN - OPUS4-28912 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Goral, Milan A1 - Kömmling, Anja A1 - Probst, Ulrich A1 - Wossidlo, Peter A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Langzeitversuche über 10 Jahre an Federkern-Metalldichtungen mit Aluminium- bzw. Silberummantelungen T2 - JAHRBUCH Dichten. Kleben. Polymer. 2023 N2 - Federunterstützte Metalldichtungen mit Aluminium(Al)- oder Silber(Ag)-Ummantelung werden u.a. in Behältern für Wärme entwickelnde radioaktive Abfälle eingesetzt, da diese Dichtungen eine sehr gute Dichtheit gewährleisten sowie Langlebigkeit und Beständigkeit gegenüber erhöhten Temperaturen und radioaktiver Strahlung aufweisen. Auch wenn die Sicherheit solcher Behälter und der verwendeten Dichtungen vielfach belegt wurde, sind sie Gegenstand andauernder Forschung, etwa im Hinblick auf eine absehbar benötigte verlängerte Zwischenlagerdauer. Aus diesem Grund werden an der Bundesanstalt für Materialforschung und -prüfung (BAM) im Fachbereich 3.4 „Sicherheit von Lagerbehältern“ seit über 20 Jahren Versuche an solchen Metalldichtungen durchgeführt. Dabei sollen zusätzliche Erkenntnisse hinsichtlich der Sicherheitsreserven der Dichtungen in unterstellten Störfallszenarien (axiale Bewegung des Deckelsystems bzw. Aufweitung der Nutgeometrie) und insbesondere detailliertere Erkenntnisse zum Langzeitverhalten gewonnen werden. KW - Federunterstützte Metalldichtungen KW - Transport- und Lagerbehälter für radioaktive Stoffe KW - Langzeitversuche KW - Alterung KW - Dichtheit KW - Leckagerate KW - Helium-Dichtheitsprüfung PY - 2023 VL - 2023 SP - 43 EP - 63 PB - ISGATEC GmbH CY - Mannheim AN - OPUS4-56399 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Jaunich, Matthias T1 - Leakage behaviour of elastomer seals under dynamic unloading conditions at low temperatures JF - Polymer Testing N2 - In technical applications, static seals are sometimes also subjected to dynamic loadings. Therefore, the leakage behaviour under dynamic conditions has to be evaluated as well. For this purpose, FKM elastomer seals have been tested by using newly designed equipment that allows for rapid partial release of the seal and simultaneous leakage rate measurement at a wide range of test temperatures. Furthermore, material characterisation was done by using Dynamic Mechanical Analysis, Differential Scanning Calorimetry and Compression Set. It was shown that, under static conditions, the leakage rate increased significantly during cooling at temperatures around 18 K lower than the glass transition range. On reheating, the seal’s functionality was restored in the high temperature region of the glass rubber transition. In the subsequent dynamic release tests, that comprised a reduction of the seal compression within 1 s from 25 % to 23 %, increased leakage rates were observed in the high temperature region of the glass transition range. It was shown that the temperature that is critical for increased leakage is significantly lower under static conditions compared to dynamic conditions. The obtained leakage rates for static tests and dynamic release tests at different temperatures were analysed with reference to results of the material characterisation. KW - Sealing material KW - Rubber KW - Partial release KW - Low temperature behaviour KW - Leakage rate PY - 2017 DO - https://doi.org/10.1016/j.polymertesting.2016.12.018 SN - 0142-9418 SN - 1873-2348 VL - 58 SP - 219 EP - 226 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-38911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -