TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Wolff, Dietmar T1 - Insights for lifetime predictions of O-ring seals from five-year long-term aging tests N2 - O-rings made of HNBR, EPDM and FKM were aged in the compressed and uncompressed state at 150 °C, 125 °C, 100 °C, 75 °C, 60 °C and 23 °C for aging times of up to five years. Hardness was measured and increased with aging time and temperature for HNBR and EPDM, but it remained practically constant for FKM. Indenter modulus measurements were performed on the lateral O-ring surface (that was free of DLO effects) to assess an influence of the compression during aging, but none was detected. The equilibrium compression set (CS) exhibited faster and stronger degradation than hardness and was used for lifetime predictions using the time-temperature superposition (TTS) principle. With an end-of-lifetime criterion of 70 % CS, lifetimes of 4.5 years, 50 years and 526 years at 75 °C were estimated for HNBR, EPDM and FKM, respectively. The activation energies derived from an Arrhenius plot of the shift factors from the TTS were 85 kJ/mol, 99 kJ/mol and 78 kJ/mol for HNBR, EPDM and FKM, respectively, revealing that a higher activation energy does not necessarily mean that the material has a higher lifetime at lower temperatures. Furthermore, the measured lifetime of EPDM O-rings at 100 °C (5 years) was compared to that predicted on the basis of the lifetime at 150 °C as well as 125 °C using the corresponding shift factors. The error of the prediction was only ± 4 %. However, this precise prediction could only be achieved using the five-year long-term aging data. When using only data from aging times up to 0.5 years and 2 years, the lifetime of EPDM O-rings at 100 °C was underestimated by 31 % and 22 %, respectively. KW - HNBR KW - EPDM KW - FKM KW - DLO KW - Hardness KW - Compression set KW - Rubber KW - Elastomer KW - Degradation PY - 2020 U6 - https://doi.org/10.1016/j.polymdegradstab.2020.109278 VL - 179 SP - 109278 PB - Elsevier Ltd. AN - OPUS4-51060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Horn, Jutta A1 - Völzke, Holger A1 - Wolff, Dietmar T1 - Long-Term Performance of Elastomer seals - From Aging Tests to Lifetime Estimations N2 - Elastomers show a high versatility which makes them ideal materials for sealing applications in various fields. Especially under changing application conditions the high recovery potential of this class of material is beneficial to compensate temperature or pressure fluctuation, and geometrical changes resulting from mechanical loads in e.g. accident conditions. Out of these reasons elastomers are also used in containers for low and intermediate level radioactive waste and for spent fuel transportation casks. In casks designed for low and intermediate level waste elastomer seals can act as primary seal responsible for the containment function whereas in spent fuel storage and transportation casks (dual purpose casks (DPC)) elastomer seals are used as auxiliary seals to allow leakage rate measurements of metal barrier seals. An inherent prerequisite for this kind of application is the Long time-scale of operation without or with limited possibility of seal replacement. In Germany an interim storage license for DPC`s is typically issued for 40 years, a timeframe which might increase in the future due to challenges of the final repository siting procedure. For low and intermediate level waste, also long time periods are required before final disposal can be achieved. Therefore, the performance of elastomer seals over extended time periods is, as for other applications, of high importance. A typical approach to ensure long-term functionality is to perform accelerated aging tests to calculate an estimated lifetime by assuming e.g. Arrhenius like equations for the timetemperature relationship. This approach requires a suitable end of life criterion considering the application of interest. This often can represent a challenge on its own. As BAM is involved in most of the cask licensing procedures and especially responsible for the evaluation of cask-related long-term safety issues we initiated several test programs for investigating the behavior of elastomer seals. Experiments concerning the low temperature performance down to -40 °C and the influence of gamma irradiation have been started first. Currently the thermal aging behavior of elastomer seals, which is the topic of this contribution, is examined. For our aging investigations we use a broad approach to first determine the property changes in different elastomer materials due to thermo-oxidative aging at elevated temperatures and secondly, we test how the typical methods of lifetime extrapolation can be applied to these results. This Approach enables us to detect and exclude undesired side effects which very often influence lifetime estimations. In this contribution, our recent results are extended. The results show that lifetime estimation based on single material properties can be misleading and therefore a combination of several methods is recommended. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Seal performance KW - Rubber KW - Ageing PY - 2018 VL - PVP2018 SP - 84631-1 EP - 84631-8 AN - OPUS4-46346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -