TY - CONF A1 - Jaunich, Matthias A1 - Wolff, Dietmar ED - Van Breugel, K. ED - Koenders, E.A.B. T1 - Approach for the investigation of long-term behaviour of elastomeric seals for transport and storage packages T2 - AMS 14 - Ageing of materials & structures - Proceedings of the 1st ageing of materials & structures 2014 conference N2 - Elastomers are widely used as main sealing materials for Containers for low and intermediate Ievel radioactive waste and as additional component to metal seals in spent fuel and high active waste Containers. According to appropriate guidelines and regulations safe enclosure of the radioactive Container contents has to be guaranteed for long storage periods as well as down to temperatures of -40 °C for transportation. Therefore the understanding of seal behaviour in general is of high importance and ageing of elastomeric seals has to be considered with regard to possible dynamic events taking possibly place during transport after storage. T2 - 1st Ageing of materials & structures 2014 conference CY - Delft, The Netherlands DA - 26.05.2014 KW - O-Ring KW - Seal KW - Ageing KW - Elastomer KW - Compression set PY - 2014 SN - 978-94-6186-313-3 SP - 87 EP - 93 AN - OPUS4-30820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Weber, Mike A1 - Kömmling, Anja A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Performance of elastomer seals in transport and storage casks T2 - International conference on management of spent fuel from nuclear power reactors: An integrated approach to the back end of the fuel cycle N2 - Elastomer seals are widely used as barrier seals in containers for low and intermediate level radioactive waste and for spent fuel transportation casks. In addition, they are also used for spent fuel storage and transportation casks (dual purpose casks (DPC)) as auxiliary seals to allow leakage rate measurements of metal barrier seals for demonstration of their proper assembling conditions. Depending on the area of use, the rubber materials have to demonstrate proper sealing performance with regard to mechanical, thermal, and environmental conditions as well as irradiation during the entire operation period. Concerning DPC, degradation effects should be limited in a way that, for example, effects from potentially released decomposition elements may not harm e.g. metal barrier seals. Leakage rate measurements should be possible also after long interim storage periods prior to subsequent transportation. Because of the complex requirements resulting from the various applications of containers for radioactive waste and spent nuclear fuel, BAM has initiated several test programmes for investigating the behaviour of elastomer seals. In this contribution the current status is described and first results are discussed. T2 - International conference on management of spent fuel from nuclear power reactors: An integrated approach to the back end of the fuel cycle CY - Vienna, Austria DA - 15.06.2015 KW - Ageing KW - Elastomer KW - Glass-rubber transition KW - Irradiation KW - Material model PY - 2015 SP - 1 EP - 8 AN - OPUS4-33553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Effects of heterogeneous aging in compressed HNBR and EPDM O-ring seals JF - Polymer Degradation and Stability N2 - Seals used in containers for dangerous goods need to maintain leak tightness for several decades. For investigating the change in seal material properties during aging, a comprehensive aging program on both uncompressed and compressed EPDM and HNBR seals was started. In order to obtain results closely related to practical conditions, O-rings with a full-scale cord diameter of 10 mm were aged. However, this set-up can lead to heterogeneous aging caused by diffusion-limited oxidation (DLO) effects. These effects depend on material, dimensions, time and temperature. Heterogeneous aging results in distorted bulk properties such as compression stress relaxation and compression set (CS) suggesting that HNBR has better performance than EPDM at 150 °C but which is not the case at 100 °C. The presence of heterogeneous material properties was shown by hardness measurements across the seal cross-section. If DLO-affected data is excluded, extrapolations of CS data are possible using time-temperature shifts and Arrhenius graphs. Exemplary CS values of 50 % and 80 % would be reached after approx. 10 years and 29 years, respectively for HNBR and after approx. 400 years and 1100 years, respectively for EPDM. KW - Ageing KW - Rubber KW - Compression KW - DLO KW - Extrapolation KW - Lifetime prediction PY - 2016 DO - https://doi.org/10.1016/j.polymdegradstab.2016.01.012 VL - 126 SP - 39 EP - 46 PB - Elsevier Science CY - Oxford AN - OPUS4-35775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Characterisation of degradation and determination of end-of-lifetime criterion for O-ring seals T2 - RubberCon 2017 N2 - The ageing of polymers, including elastomers, is an undesirable but inevitable process leading to a limited lifetime of rubber products such as seals. Independent of the application, as e.g. in automotive, piping or container applications, a long lifetime or at least a timely exchange of a seal before occurrence of critical failure is desired. In order to investigate the degradation of material properties and to determine the lifetime of elastomers used as seals, an ageing programme was started with hydrogenated acrylonitrile butadiene rubber (HNBR), ethylene propylene diene rubber (EPDM) and fluorocarbon rubber (FKM) [1-3]. Both O-ring seals (uncompressed and compressed by 25 %) with a cord diameter of 10 mm as well as sheets with a thickness of 2 mm were aged at 75 °C, 100 °C, 125 °C and 150 °C for up to two years. The changes of material properties during ageing were characterised for each material using samples from the sheets by means of e.g. Dynamic Mechanical Analysis and tensile tests, while sealing properties such as leakage rate were determined on O-rings. The experimental results indicate that while material properties show considerable degradation effects, the static leakage rate stays constant or even decreases before failure occurs quite suddenly at advanced degradation levels. This reveals that static leakage rate has only limited sensitivity for the degradation of the seal material. Our approach to determine a suitable end of lifetime criterion, which involves a partial decompression of the seal during the leakage test, is presented and discussed. T2 - RubberCon 2017 CY - Prague, Czech Republic DA - 23.05.2017 KW - Life time prediction KW - Ageing KW - Rubber seal KW - Leakage PY - 2017 SN - 978-80-906662-0-7 SP - 65 EP - 72 AN - OPUS4-40391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Subramani Bhagavatheswaran, E. A1 - Wießner, S. A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Aging study and electrical resistance based stress-monitoring of rubber seals T2 - 192nd Technical meeting of the ACS Rubber Division N2 - Elastomer seals are widely used as barrier seals in containers for low and intermediate level radioactive waste. In addition, they are also used in waste fuel storage and transportation casks as auxiliary seals. Depending on the area of use, the rubber materials have to demonstrate proper sealing performance with respect to mechanical, thermal and environmental conditions as well as irradiation during the entire operation period. A fundamental understanding of the structure property relationship and their changes during aging can help to evaluate the long-term sealing performance. In the present study, specific materials are investigated to study the structure-property and seal performance-correlation. Fluoro-elastomer (FKM), silicone rubber (VMQ) and ethylene propylene diene rubber (EPDM) were chosen as base rubbers. Comparable mechanical properties for these seals, especially in terms of a comparable compression behavior were achieved by careful control of base rubber formulation, i.e., by opting for the right filler and its concentration, amount of crosslinking chemicals, and with the assistance of process oils. Moreover, with the same rubber, similar mechanical properties were achieved by varying the filler concentration and crosslinking degree, which shall enable to correlate the particular influence on the structure property dependency of the seals in detail. The materials are investigated under pristine and aged conditions to evaluate the influence of aging, e.g. on the stress relaxation or recovery behavior. These values appear to be suitable parameters to judge the expected sealing performance. Due to the electrically conducting nature of some fillers used to reinforce rubbers (such as carbon blacks, carbon nanotubes (CNTs), Graphene, etc.) it is possible to obtain current information about mechanical and visco-elastic properties by monitoring the electrical conductivity or resistivity. A simple relation that relates electrical resistance with mechanical stress was derived and the stress values were theoretically predicted from the electrical resistance values, which showed good correlation with experimental results. T2 - 192nd Technical meeting of the ACS Rubber Division CY - Cleveland, OH, USA DA - 09.10.2017 KW - Seal KW - Rubber KW - Degradation KW - Structure-property relationship KW - Ageing PY - 2017 VL - 2017 SP - 1 EP - 25 AN - OPUS4-42849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Wolff, Dietmar ED - Grellmann, W. ED - Langer, B. T1 - Investigations of elastomeric seals – Low temperature performance and aging behavior T2 - Deformation and Fracture Behaviour of Polymer Materials N2 - Due to their simple and reliable application, elastomers are used for many tasks. Many fields of application like transport, aviation and process technology, entail low temperatures where proper functionality of the employed seals has to be ensured. Therefore, understanding the low temperature behavior of elastomeric seals is important for safe seal operation to restrict the temperature application range. For all areas of application, the question of seal lifetime is also important for replacement or maintenance intervals. The lifetime is especially important in applications that allow no seal replacement. Since the seal can determine the lifetime of storage in such cases, reliable lifetime estimation is necessary for these applications, and requires an extensive knowledge of the specific aging behavior. KW - Seal KW - Rubber KW - Ageing KW - Replacement PY - 2017 SN - 978-3-319-41877-3 SN - 978-3-319-41879-7 DO - https://doi.org/10.1007/978-3-319-41879-7_30 SN - 0933-033X SN - 2196-2812 VL - 247 SP - 431 EP - 443 PB - Springer Verlag AN - OPUS4-41167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Jaunich, Matthias ED - van Breugel, K. ED - Koleva, D. ED - Beek, T. T1 - Investigation of long-term behaviour of elastomeric seals for transport and storage packages T2 - The Aging of Materials and Structures - Towards Scientific Solutions for the Ageing of Our Assets N2 - Elastomers are widely used as the main sealing materials in Containers for low- and intermediate-level radioactive waste and as an additional component fo metal seals in spent-fuel and high-level waste containers. According to appropriate guidelines and regulations, safe enclosure of the radioactive container contents has to be guaranteed for lengthy storage periods of at least 40 years. Therefore, the understanding of seal ageing behaviour is of high importance and has to be considered with regard to possible dynamic events taking place during transport after storage. An accelerated ageing approach for compressed seals is presented, as well as some first results. KW - O Ring KW - Ageing KW - Rubber seal PY - 2018 SN - 978-3-319-70192-9 DO - https://doi.org/10.1007/978-3-319-70194-3_2 SP - 17 EP - 25 PB - Springer AN - OPUS4-43248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Horn, Jutta A1 - Völzke, Holger A1 - Wolff, Dietmar T1 - Long-Term Performance of Elastomer seals - From Aging Tests to Lifetime Estimations T2 - Proceedings of the ASME 2018 Pressure Vessels an Piping Conference N2 - Elastomers show a high versatility which makes them ideal materials for sealing applications in various fields. Especially under changing application conditions the high recovery potential of this class of material is beneficial to compensate temperature or pressure fluctuation, and geometrical changes resulting from mechanical loads in e.g. accident conditions. Out of these reasons elastomers are also used in containers for low and intermediate level radioactive waste and for spent fuel transportation casks. In casks designed for low and intermediate level waste elastomer seals can act as primary seal responsible for the containment function whereas in spent fuel storage and transportation casks (dual purpose casks (DPC)) elastomer seals are used as auxiliary seals to allow leakage rate measurements of metal barrier seals. An inherent prerequisite for this kind of application is the Long time-scale of operation without or with limited possibility of seal replacement. In Germany an interim storage license for DPC`s is typically issued for 40 years, a timeframe which might increase in the future due to challenges of the final repository siting procedure. For low and intermediate level waste, also long time periods are required before final disposal can be achieved. Therefore, the performance of elastomer seals over extended time periods is, as for other applications, of high importance. A typical approach to ensure long-term functionality is to perform accelerated aging tests to calculate an estimated lifetime by assuming e.g. Arrhenius like equations for the timetemperature relationship. This approach requires a suitable end of life criterion considering the application of interest. This often can represent a challenge on its own. As BAM is involved in most of the cask licensing procedures and especially responsible for the evaluation of cask-related long-term safety issues we initiated several test programs for investigating the behavior of elastomer seals. Experiments concerning the low temperature performance down to -40 °C and the influence of gamma irradiation have been started first. Currently the thermal aging behavior of elastomer seals, which is the topic of this contribution, is examined. For our aging investigations we use a broad approach to first determine the property changes in different elastomer materials due to thermo-oxidative aging at elevated temperatures and secondly, we test how the typical methods of lifetime extrapolation can be applied to these results. This Approach enables us to detect and exclude undesired side effects which very often influence lifetime estimations. In this contribution, our recent results are extended. The results show that lifetime estimation based on single material properties can be misleading and therefore a combination of several methods is recommended. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Seal performance KW - Rubber KW - Ageing PY - 2018 VL - PVP2018 SP - 84631-1 EP - 84631-8 AN - OPUS4-46346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Scission, cross-linking, and physical relaxation during thermal degradation of elastomers JF - Polymers N2 - Elastomers are susceptible to chemical ageing, i.e., scission and cross-linking, at high temperatures. This thermally driven ageing process affects their mechanical properties and leads to limited operating time. Continuous and intermittent stress Relaxation measurements were conducted on ethylene propylene diene rubber (EPDM) and hydrogenated nitrile butadiene rubber (HNBR) samples for different ageing times and an ageing temperature of 125 °C. The contributions of chain scission and cross-linking were analysed for both materials at different ageing states, elucidating the respective ageing mechanisms. Furthermore, compression set experiments were performed under various test conditions. Adopting the two-network model, compression set values were calculated and compared to the measured data. The additional effect of physical processes to scission and cross-linking during a long-term thermal exposure is quantified through the compression set analysis. The characteristic times relative to the degradation processes are also determined. KW - Ageing KW - Scission KW - Cross-linking KW - Compression set KW - Physical relaxation PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486091 DO - https://doi.org/10.3390/polym11081280 SN - 2073-4360 VL - 11 IS - 8 SP - 1280, 1 EP - 12 PB - MDPI AN - OPUS4-48609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Völzke, Holger ED - Stuke, M. T1 - Long-term evaluation of sealing systems for radioactive waste packages T2 - Proceedings of the 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel N2 - The investigation of the long-term performance of sealing systems employed in containers for radioactive waste and spent nuclear fuel is one research focus area for division 3.4 “Safety of Storage Containers” at the Bundesanstalt für Materialforschung und -prüfung (BAM). Our investigations comprise investigations on metallic and elastomeric seals and covers experimental investigations to get a database on the component/material behaviour, work on analytical descriptions and numerical analysis. Our aim is to understand the long-term behaviour of the sealing systems for evaluation of their performance during possible extended interim storage and subsequent transportation. T2 - 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 05.06.2019 KW - Seal performance KW - Rubber seal KW - Metallic seal KW - Ageing PY - 2019 SP - 57 EP - 62 AN - OPUS4-48225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -