TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Overview of ongoing long-term ageing investigations on elastomer seals N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) in Division 3.4 Safety of Storage Containers, one of our tasks is to evaluate the safety of containers designed for disposal of low and intermediate radioactive waste. As such containers might be transported before and stored until disposal, safe enclosure of the radioactive inventory is important for this time span. Elastomer O-rings are widely used as barrier seals in these containers. Thus, as for many other applications, an understanding of the practical effects of ageing degradation on elastomer seals during long-term exposure is mandatory for predicting the lifetime of such components. According to a long-term test programme on three kinds of rubbers (EPDM and FKM (relevant for application), HNBR (for comparison)), over several years we have studied the degradation and the change of mechanical properties (e.g. hardness, strain at break) at four different ageing temperatures (75 °C, 100 °C, 125 °C and 150 °C) as well as the change of sealing properties. Continuous and intermittent compression stress relaxation (CSR) measurements were performed in order to investigate the respective contribution of crosslinking and chain scission to the observed degradation effects. Thus, the degradation kinetics and mechanisms could be resolved more clearly. For assessing the seal performance, compression set (CS) and leakage rate measurements were conducted. The experimental results showed that the O-rings remained leak-tight under purely static conditions even when CSR, CS and mechanical properties already indicated far advanced degradation. For this reason, a modified leakage test involving a small and rapid partial decompression of the seal was developed that enabled determining an end-of-lifetime criterion for O-rings with a safety margin for thermal shrinkage and vibrations. KW - Seal KW - O-Ring KW - Ageing KW - Component tests PY - 2020 SN - 1863-7116 VL - 15 IS - 3 SP - 146 EP - 151 PB - Gupta CY - Ratingen AN - OPUS4-51161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Scission, cross-linking, and physical relaxation during thermal degradation of elastomers N2 - Elastomers are susceptible to chemical ageing, i.e., scission and cross-linking, at high temperatures. This thermally driven ageing process affects their mechanical properties and leads to limited operating time. Continuous and intermittent stress Relaxation measurements were conducted on ethylene propylene diene rubber (EPDM) and hydrogenated nitrile butadiene rubber (HNBR) samples for different ageing times and an ageing temperature of 125 °C. The contributions of chain scission and cross-linking were analysed for both materials at different ageing states, elucidating the respective ageing mechanisms. Furthermore, compression set experiments were performed under various test conditions. Adopting the two-network model, compression set values were calculated and compared to the measured data. The additional effect of physical processes to scission and cross-linking during a long-term thermal exposure is quantified through the compression set analysis. The characteristic times relative to the degradation processes are also determined. KW - Ageing KW - Scission KW - Cross-linking KW - Compression set KW - Physical relaxation PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486091 DO - https://doi.org/10.3390/polym11081280 SN - 2073-4360 VL - 11 IS - 8 SP - 1280, 1 EP - 12 PB - MDPI AN - OPUS4-48609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Numerical Modelling of Compression Stress Relaxation and Compression Set of Elastomer O-Ring During Aging N2 - Elastomer seals are used in many industrial applications due to their excellent mechanical properties at a wide range of temperatures. Their high versatility and recovery potential under several load conditions make them well suitable for the application in containers designed for transport, storage and/or disposal of radioactive materials. In containers for low and intermediate level radioactive waste, elastomer seals are used as barrier seals, and as auxiliary seals in storage and transportation casks (dual purpose casks) for heat generating radioactive waste, such as spent fuel and high-level waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered and prohibit an unnecessary cask handling. An extensive knowledge of the change of the elastomer’s properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the permanent safe enclosure of the radioactive material is mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have been already made and are still planned to scientifically support this task. Compression stress relaxation and compression set were identified as key indicators of elastomer long-term performance and quantitatively investigated in comprehensive test programs. Among other representative types of elastomers, specimens made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the most important of their complex mechanical properties. In the presented study, exemplary results were used to simulate the compression stress relaxation and the compression set of elastomer O-rings during aging. Regarding the influence of temperature, the time-temperature superposition principle is applied in the relaxation analysis of elastomer O-rings. The proposed model is implemented in the commercial finite element software ABAQUS/Standard® [1] with a sequential temperature displacement coupling. Numerical results match the experimental compression stress relaxation measurements well. The prediction of compression set values after long-term aging shows a relatively good agreement with the experimental results. Nevertheless, all input parameters derived from the specimen tests, additional assumptions concerning boundary conditions and modeling strategy are discussed with regard to the identified slight discrepancies. The possibility to extend the finite element model to represent the O-ring seal’s ability to recover after a (fast) partial release is taken into account. T2 - ASME 2020 Pressure Vessels & Piping Conference (PVP2020) CY - Online meeting DA - 03.08.2020 KW - Compression Set KW - O-ring KW - Simulation KW - Sequential analysis KW - Ageing KW - stress relaxation PY - 2020 SN - 978-0-7918-8388-4 DO - https://doi.org/10.1115/PVP2020-21270 SP - PVP2020-21270 PB - ASME AN - OPUS4-51490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Jaunich, Matthias ED - van Breugel, K. ED - Koleva, D. ED - Beek, T. T1 - Investigation of long-term behaviour of elastomeric seals for transport and storage packages N2 - Elastomers are widely used as the main sealing materials in Containers for low- and intermediate-level radioactive waste and as an additional component fo metal seals in spent-fuel and high-level waste containers. According to appropriate guidelines and regulations, safe enclosure of the radioactive container contents has to be guaranteed for lengthy storage periods of at least 40 years. Therefore, the understanding of seal ageing behaviour is of high importance and has to be considered with regard to possible dynamic events taking place during transport after storage. An accelerated ageing approach for compressed seals is presented, as well as some first results. KW - O Ring KW - Ageing KW - Rubber seal PY - 2018 SN - 978-3-319-70192-9 DO - https://doi.org/10.1007/978-3-319-70194-3_2 SP - 17 EP - 25 PB - Springer AN - OPUS4-43248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Zaghdoudi, Maha T1 - Comparison of ageing behaviour of O-ring seals under hydrogen and air N2 - Elastomeric seals are essential components in the infrastructure which prevent leakage of gas and proper function of technical devices and are therefore highly safety relevant. For proper function a remaining resilience and tolerance to pressure changes is required. The ageing of elastomers is an undesirable but inevitable process leading to a limited lifetime of rubber products such as seals. Independent of the application, as e.g. automotive, piping or container applications, a long lifetime or at least a timely exchange of a seal before occurrence of critical failure is desired. Hydrogen is a key element for the energy turnaround and therefore the compatibility of seals with hydrogen is essential. In addition to the effect of hydrogen uptake and release, which might also cause destructive effects such as rapid gas decompression, ageing at high temperature under hydrogen atmosphere is of interest too. Most of the existing work is addressing the performance of new materials and comprises only very limited investigations concerning long-term use and the behaviour of aged materials in contact with hydrogen. As ageing can lead to substantial changes of material properties, it must be evaluated whether these changes are beneficial or deteriorating for the component function. In this work we present and compare results of the characterisation of three sealing materials (EPDM, HNBR, FKM) after ageing at high temperature under hydrogen and air. Despite the common assumption that ageing under hydrogen atmosphere should be less severe for the material in comparison to air ageing, this is not the case for every material. T2 - RubberCon 2023 CY - Edinburgh, Scotland DA - 09.05.2023 KW - Hydrogen KW - Ageing KW - Seal PY - 2023 AN - OPUS4-58178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Understanding the recovery behaviour and the degradative processes of EPDM during ageing N2 - Recovery is an important measure for seal applications representing to which extent the elastomer regains its initial shape after deformation and release of an applied force. Compression set (CS) indicates the degree of recovery. Ethylene propylene diene rubber (EPDM) was aged at 75 ◦C, 100 ◦C, 125 ◦C and 150 ◦C for different ageing times up to five years and compression set measurements were performed at different times after disassembly and after additional tempering. Short- and long-term recovery up to one year after release for samples aged at 125 ◦C and 150 ◦C was also studied. To assess the curvature in the Arrhenius diagram that may occur due to non-sufficiently aged specimens, a degradation-rate based model was fitted to the CS data after tempering. For each ageing temperature, two decay fit functions were proposed, each with an activation energy and a corresponding degradative process. The influence of ageing on the leak-tightness after fast small partial release is investigated and estimated through the analysis of the shift factors from time temperature superposition (TTS) of CS measurements at different times after disassembly. Shift factors of CS measurement after 1 s and after additional tempering are in good agreement. KW - Compression set KW - Ageing KW - Recovery KW - Degradative processes KW - Leakage rate PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573699 DO - https://doi.org/10.1016/j.polymertesting.2023.107987 SN - 0142-9418 VL - 121 SP - 107987 PB - Elsevier Ltd. AN - OPUS4-57369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Völzke, Holger ED - Stuke, M. T1 - Long-term evaluation of sealing systems for radioactive waste packages N2 - The investigation of the long-term performance of sealing systems employed in containers for radioactive waste and spent nuclear fuel is one research focus area for division 3.4 “Safety of Storage Containers” at the Bundesanstalt für Materialforschung und -prüfung (BAM). Our investigations comprise investigations on metallic and elastomeric seals and covers experimental investigations to get a database on the component/material behaviour, work on analytical descriptions and numerical analysis. Our aim is to understand the long-term behaviour of the sealing systems for evaluation of their performance during possible extended interim storage and subsequent transportation. T2 - 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 05.06.2019 KW - Seal performance KW - Rubber seal KW - Metallic seal KW - Ageing PY - 2019 SP - 57 EP - 62 AN - OPUS4-48225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Long-term evaluation of sealing systems for radioactive waste packages N2 - The investigation of the long-term performance of sealing systems employed in containers for radioactive waste and spent nuclear fuel is one research focus area for division 3.4 “Safety of Storage Containers” at the Bundesanstalt für Materialforschung und -prüfung (BAM). Our investigations comprise investigations on metallic and elastomeric seals and covers experimental investigations to get a database on the component/material behaviour, work on analytical descriptions and numerical analysis. Our aim is to understand the long-term behaviour of the sealing systems for evaluation of their performance during possible extended interim storage and subsequent transportation. T2 - 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 05.06.2019 KW - Seal performance KW - Rubber seal KW - Metallic seal KW - Ageing PY - 2019 AN - OPUS4-48224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Horn, Jutta A1 - Völzke, Holger A1 - Wolff, Dietmar T1 - Long-Term Performance of Elastomer seals - From Aging Tests to Lifetime Estimations N2 - Elastomers show a high versatility which makes them ideal materials for sealing applications in various fields. Especially under changing application conditions the high recovery potential of this class of material is beneficial to compensate temperature or pressure fluctuation, and geometrical changes resulting from mechanical loads in e.g. accident conditions. Out of these reasons elastomers are also used in containers for low and intermediate level radioactive waste and for spent fuel transportation casks. In casks designed for low and intermediate level waste elastomer seals can act as primary seal responsible for the containment function whereas in spent fuel storage and transportation casks (dual purpose casks (DPC)) elastomer seals are used as auxiliary seals to allow leakage rate measurements of metal barrier seals. An inherent prerequisite for this kind of application is the Long time-scale of operation without or with limited possibility of seal replacement. In Germany an interim storage license for DPC`s is typically issued for 40 years, a timeframe which might increase in the future due to challenges of the final repository siting procedure. For low and intermediate level waste, also long time periods are required before final disposal can be achieved. Therefore, the performance of elastomer seals over extended time periods is, as for other applications, of high importance. A typical approach to ensure long-term functionality is to perform accelerated aging tests to calculate an estimated lifetime by assuming e.g. Arrhenius like equations for the timetemperature relationship. This approach requires a suitable end of life criterion considering the application of interest. This often can represent a challenge on its own. As BAM is involved in most of the cask licensing procedures and especially responsible for the evaluation of cask-related long-term safety issues we initiated several test programs for investigating the behavior of elastomer seals. Experiments concerning the low temperature performance down to -40 °C and the influence of gamma irradiation have been started first. Currently the thermal aging behavior of elastomer seals, which is the topic of this contribution, is examined. For our aging investigations we use a broad approach to first determine the property changes in different elastomer materials due to thermo-oxidative aging at elevated temperatures and secondly, we test how the typical methods of lifetime extrapolation can be applied to these results. This Approach enables us to detect and exclude undesired side effects which very often influence lifetime estimations. In this contribution, our recent results are extended. The results show that lifetime estimation based on single material properties can be misleading and therefore a combination of several methods is recommended. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Seal performance KW - Rubber KW - Ageing PY - 2018 VL - PVP2018 SP - 84631-1 EP - 84631-8 AN - OPUS4-46346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Wolff, Dietmar A1 - Völzke, Holger ED - Krüssenberg, A. T1 - Overview of metal seal tests performed at BAM and implications for extended interim storage N2 - The investigation of the long-term performance of sealing systems employed in containers of radioactive waste and spent nuclear fuel is one research focus area for division 3.4 \Safety of Storage Containers" at the Bundesanstalt für Materialforschung und -prüfung. The behaviour of metallic seals, which are employed in interim storage casks for spent nuclear fuel and high active waste, over time is of high importance for ensuring safe enclosure. Therefore, investigations on these systems were started at BAM to get a general understanding of the relevant processes. Our investigations comprise investigations on different parameters which influence the seal Performance and the main part is focussed on the time and temperature dependent behaviour. Our aim is to understand the longterm behaviour of the sealing systems for evaluation of their performance during possible extended interim storage and subsequent transportation. In this contribution an overview of the performed tests and their respective results is given. A focus lies on a comparison between seals with large torus diameter in comparison to small diameters. T2 - Safety of Extended Dry Storage of Spent Nuclear Fuel SEDS2020: International online-workshop CY - Online meeting DA - 03.06.2020 KW - Metal seal KW - Seal performance KW - Long-term investigation KW - Ageing PY - 2020 DO - https://doi.org/10.3139/124.200071 SN - 0932-3902 VL - 85 IS - 6 SP - 440 EP - 443 PB - Carl Hanser Verlag CY - München AN - OPUS4-51833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -