TY - CONF A1 - Johann, Sergej A1 - Noske, Reinhard A1 - Feller, Viktor A1 - Bartholmai, Matthias ED - Vonau, Winfried ED - Cruvinel, P. ED - Chilibon, I. ED - Carvalho, V. ED - Sophocleous, M. T1 - Gas detection using a multi-sensor device with pump control and VOC sensor N2 - This paper deals with the development and investi-gation of a volatile organic compound (VOC) system for differ-ent scenarios. The integrated multi-sensor unit can detect dif-ferent gases through the integrated 3-fold VOC sensor, where-by a continuous measurement takes place. The system-integrated flow control, with pump and flow sensor, allows the gas molecules to be transported directly to the VOC sensor. The entire measurement is permanently stored on an integrat-ed Secure Digital (SD) card. If the previously determined limit range is exceeded, an alarm is generated. Due to the combina-tion of different components, numerous applications are possi-ble. The system is the first step or a tool towards further devel-opments in the field of gas sensors and is primarily used for the validation of chemically based gas sensors, and it is still largely extended by application-specific influences. T2 - Sensordevices 2017 - The Eighth International Conference on Sensor Device Technologies and Applications CY - Rome, Italy DA - 2017-09-10 KW - Gas detection KW - VOC KW - Pump control KW - Multi sensor device PY - 2017 SN - 978-1-61208-581-4 SP - 1 EP - 4 CY - Rome, Italy AN - OPUS4-42097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Johann, Sergej A1 - Daum, Werner ED - Cosmi, F. T1 - Characterization of the temperature behavior of a piezoresistive accelerometer N2 - Piezoresistive accelerometers use a strain-sensing element, generally made of semiconductor material, e.g., silicon to convert the mechanical motion into an electrical signal. This element is usually designed in form of a cantilever beam loaded with a mass. Acceleration causes bending of the beam, which produces a change of electrical resistance proportional to the applied acceleration. Main advantages of piezoresistive accelerometers in comparison to other types, e.g., piezoelectric and capacitive, is their robust and highly dynamic behavior, which qualifies them for application in high impact shock applications. Mechanical damping is typically implemented with silicon oil in a way that the output signal is undistorted over a wide frequency range. These characteristics principally qualify them for the application in drop tests carried out at BAM, for which they are calibrated over the frequency range from 1 to 4 kHz. However, using silicon oil for damping, has the drawback of temperature dependent change of its viscosity, leading to temperature dependent deviation of the accelerometer’s sensitivity. This study presents experimental results of the temperature behavior of a piezoresistive accelerometer with a dynamic range up to ±5000 g. This type of accelerometer is applied for drop tests which are partially performed at temperatures of -40 or +100 °C. T2 - 34th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Trieste, Italy DA - 19.09.2017 KW - Accelerometer KW - Temperature behavior KW - Drop test PY - 2017 UR - https://www.openstarts.units.it/handle/10077/14921 SN - 978-88-8303-863-1 SP - 93 EP - 95 CY - Trieste AN - OPUS4-42109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Hüllmann, Dino T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources. T2 - Tag der offenen Tür auf dem Testgelände der BAM (BAM TTS) CY - Baruth/Mark - OT Horstwalde, Germany DA - 29.09.2018 KW - Mobile Robot Olfaction KW - Swarm KW - Nano aerial robot KW - Gas sensing PY - 2018 AN - OPUS4-46147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Airborne Remote Gas Sensing and Mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of These kind of leaks, we developed a novel robotic platform for aerial remote gas sensing - the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS). T2 - Tag der offenen Tür auf dem Testgelände der BAM (BAM TTS) CY - Baruth/Mark - OT Horstwalde, Germany DA - 29.09.2018 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2018 AN - OPUS4-46152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias ED - Pastramă, D. Ş ED - Constantinescu, D. M. T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Mobile Robot Olfaction KW - Swarm KW - Nano aerial robot KW - Gas sensing PY - 2018 SN - 978-606-23-0874-2 SP - 139 EP - 140 PB - PRINTECH CY - Bukarest AN - OPUS4-46137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias A1 - Tiebe, Carlo T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Gas sensing KW - Mobile Robot Olfaction KW - Nano aerial robot KW - Swarm PY - 2019 AN - OPUS4-47799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias A1 - Tiebe, Carlo A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Gas Tomography Up In The Air! N2 - In this paper, we present an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS) combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile octocopter. The TDLAS sensor provides integral gas concentration measurements but no information regarding the distance traveled by the laser diode's beam or the distribution of the gas along the optical path. We complemented the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from these integral concentration measurements. To allow for a rudimentary ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present first results showing the 2D plume reconstruction capabilities of the system under realistic conditions. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Aerial robot KW - Gas tomography KW - Plume KW - TDLAS PY - 2019 AN - OPUS4-47800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Tiebe, Carlo T1 - KonSens (Kommunizierende Sensorsysteme für die Bauteil- und Umweltüberwachung) - Projektergebnisse N2 - Im Projekt KonSens werden für die Anwendungsbeispiele bauteilintegrierte Sensorik für Betonkomponenten und mobile Multigassensorik Sensorsysteme in Form von Funktionsmustern entwickelt, validiert und angewendet. Schwerpunkte liegen einerseits in der Detektion und Bewertung von Korrosionsprozessen in Beton und andererseits in der Detektion und Quantifizierung sehr geringer Konzentrationen toxischer Gase in der Luft. Dabei ist die Adaption der sensorischen Methoden aus dem Labor in reale Messumgebungen inklusive geeigneter Kommunikationstechnik ein wichtiger Aspekt. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Umweltmonitoring KW - Bauwerksüberwachung KW - RFID-Sensorsysteme KW - pH-Sensor KW - Fluoreszenzsensoren PY - 2019 AN - OPUS4-47763 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Tiebe, Carlo A1 - Paul, Niels A1 - Lilienthal, A. J. T1 - Wind Vector Estimation on Multirotor Aircraft N2 - An equation for wind vector estimation using a multirotor aircraft as a flying anemometer is shown. To compute the wind vector an estimate of the thrust of the aircraft is required, which is related to the rotational speed of the rotors. Hence, a sensing system for the rotational speed using phototransistors is presented. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Anemometer KW - Phototransistor KW - Thrust KW - Wind PY - 2019 AN - OPUS4-47801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias A1 - Hofmann, Michael T1 - VDI/VDE 3518 Technische Richtlinie für Multigassensoren N2 - Der Beitrag präsentiert die erarbeiteten technischen Richtlinien zur Anwendung und Prüfung von Multigassensoren innerhalb der Richtlinienreihe VDI/VDE 3518 sowie in diesem Zusammenhang die Möglichkeiten der Sensorprüfung im akkreditierten Prüflabor des Fachbereichs 8.1 der BAM. Im Speziellen wird das in Kürze veröffentlichte Blatt 3 der Richtlinienreihe vorgestellt, das Bezug auf Multigassensoren für geruchsbezogene Messungen mit elektronischen Nasen nimmt. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Multigassensoren KW - Prüfung KW - Richtlinie PY - 2018 AN - OPUS4-47885 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -