TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Köppe, Enrico T1 - Monitoring of Hazardous Scenarios using Multi-Sensor-Devices T2 - Sensordevices 2013 CY - Barcelona, Spain DA - 2013-08-25 PY - 2013 AN - OPUS4-29803 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Lazik, D. T1 - Multifunctional sensor for monitoring of CO2 underground storage by comprehensive and spatially resolved measuring of gas concentrations, temperature and structural changes N2 - One of the main unsolved issues of CCS is the comprehensive surveillance of CO2 storage areas with reasonable effort and costs. This study presents an approach for distributed subsurface monitoring of gas storage areas. The concept combines different measurement technologies to one multifunctional sensor: membrane based measurement technology for in situ monitoring of gases in soil and fibre optical sensing of temperature and strain (as a measure for structural change). A test field of application-relevant dimensions is built up to validate and optimize the technology. T2 - GHGT 11 - Greenhouse gas control technologies conference CY - Kyoto, Japan DA - 2012-11-18 KW - Multifunctional sensor KW - Distributed sensor KW - Monitoring of CO2 KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fibre optical sensing PY - 2013 UR - http://reginnovations.org/key-scientific-articles/multifunctional-sensor-monitoring-co2-underground-storage-comprehensive-spatially-resolved-measuring-gas-concentrations-temperature-structural-changes/ DO - https://doi.org/10.1016/j.egypro.2013.06.303 SN - 1876-6102 VL - 37 SP - 4033 EP - 4040 PB - Elsevier CY - Amsterdam AN - OPUS4-28910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Asadi, S. A1 - Hernandez Bennetts, V. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias T1 - Monitoring of CCS areas using micro unmanned aerial vehicles (MUAVs) N2 - Carbon capture & storage (CCS) is one of the most promising technologies for greenhouse gas (GHG) management. However, an unsolved issue of CCS is the development of appropriate long-term monitoring systems for leak detection of the stored CO2. To complement already existing monitoring infrastructure for CO2 storage areas, and to increase the granularity of gas concentration measurements, a quickly deployable, mobile measurement device is needed. In this paper, we present an autonomous gas-sensitive micro-drone, which can be used to monitor GHG emissions, more specifically, CO2. Two different measurement strategies are proposed to address this task. First, the use of predefined sensing trajectories is evaluated for the task of gas distribution mapping using the micro-drone. Alternatively, we present an adaptive strategy, which suggests sampling points based on an artificial potential field (APF). The results of real-world experiments demonstrate the feasibility of using gas-sensitive micro-drones for GHG monitoring missions. Thus, we suggest a multi-layered surveillance system for CO2 storage areas. T2 - GHGT 11 - Greenhouse gas control technologies conference CY - Kyoto, Japan DA - 18.11.2012 KW - Gas-sensitive micro-drone KW - Gas distribution mapping KW - Sensor planning KW - Artificial potential field KW - CCS PY - 2013 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-289119 DO - https://doi.org/10.1016/j.egypro.2013.06.320 SN - 1876-6102 VL - 37 SP - 4182 EP - 4190 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-28911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Schnürmacher, M. A1 - Bennetts, V.H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias A1 - Schiller, J.H. T1 - A probabilistic gas patch path prediction approach for airborne gas ource localization in non-uniform wind fields N2 - In this paper, we show that a micro unmanned aerial vehicle (UAV) equipped with commercially available gas sensors can address environmental monitoring and gas source localization (GSL) tasks. To account for the challenges of gas sensing under real-world conditions, we present a probabilistic approach for GSL that is based on a particle filter (PF). Simulation and real-world experiments demonstrate the suitability of this algorithm for micro UAV platforms. T2 - ISOEN 2013 - 15th International symposium on olfaction and electronic nose CY - Deagu, South Korea DA - 02.07.2013 KW - Autonomous micro UAV KW - Chemical and wind sensing KW - Gas source localization KW - Particle filter PY - 2013 IS - Symposia / Applications of remote and local gas sensing ... SP - 15 EP - 16 AN - OPUS4-28878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias T1 - Fire Science - Prevention, Assessment and Containment of Hazards using Sensors and NDT-Methods T2 - BAM-Workshop Fire Science CY - Berlin, Germany DA - 2013-11-29 PY - 2013 AN - OPUS4-30734 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -