TY - GEN A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Wiggerich, B. T1 - Mikrodrohne zur Charakterisierung und selbstoptimierenden Suche von gasförmigen Gefahrstoffquellen T2 - 15. ITG/GMA-Fachtagung - Sensoren und Messsysteme 2010 (Proceedings) T2 - 15. ITG/GMA-Fachtagung - Sensoren und Messsysteme 2010 CY - Nürnberg, Deutschland DA - 2010-05-18 KW - Mikrodrohne KW - Quadrokopter KW - Robotik KW - Suche und Lokalisierung von gasförmigen Gefahrstoffquellen PY - 2010 SN - 978-3-8007-3260-9 IS - Paper 136 SP - 753 EP - 757 PB - VDE-Verl. CY - Berlin; Offenbach AN - OPUS4-21327 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. T1 - Micro-Drone for Gas Measurement in Hazardous Scenarios via Remote Sensing T2 - The 6th International Conference on REMOTE SENSING (REMOTE '10) T2 - The 6th International Conference on REMOTE SENSING (REMOTE '10) CY - Iwate, Japan DA - 2010-10-04 PY - 2010 AN - OPUS4-22415 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. ED - Fujita, H. ED - Sasaki, J. T1 - Micro-drone for gas measurement in hazardous scenarios via remote sensing T2 - 6th WSEAS International conference on remote sensing (REMOTE '10) - Selected topics in power systems and remote sensing T2 - 6th WSEAS International conference on REMOTE SENSING (REMOTE '10) CY - Iwate, Japan DA - 2010-10-04 KW - Remote sensing KW - Micro-drone KW - UAV KW - Gas measurement KW - Emission control KW - Data mapping KW - Monitoring KW - Plume tracking PY - 2010 SN - 978-960-474-233-2 SN - 1792-5088 SP - 149 EP - 152 PB - WSEAS Press AN - OPUS4-22275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Micro-Drone for the Characterization and Self-Optimizing Search of Hazardous Gaseous Substance Sources T2 - International Micro Air Vehicle Conference and Flight Competition (IMAV 2010) T2 - International Micro Air Vehicle Conference and Flight Competition (IMAV 2010) CY - Braunschweig, Germany DA - 2010-07-06 PY - 2010 AN - OPUS4-22043 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Wiggerich, B. A1 - Bartholmai, Matthias T1 - Micro-drone for the characterization and self-optimizing search of hazardous gaseous substance sources T2 - IMAV 2010 - International micro air vehicle conference and flight competition (Proceedings) T2 - IMAV 2010 - International micro air vehicle conference and flight competition CY - Braunschweig, Germany DA - 2010-07-06 KW - Mikrodrohne KW - Quadrokopter KW - Robotik KW - Suche und Lokalisierung von gasförmigen Gefahrstoffquellen PY - 2010 SP - 1 EP - 5 AN - OPUS4-22051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Mikrodrohne zur Gasmessung in Gefahrenszenarien T2 - Sensor + Test 2010 T2 - Sensor + Test 2010 CY - Nuremberg, Germany DA - 2010-05-18 PY - 2010 AN - OPUS4-22018 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Micro-drone for the characterization and self-optimizing search of hazardous gaseous substance sources T2 - Artificial Olfaction Seminar T2 - Artificial Olfaction Seminar CY - Örebro, Sweden DA - 2010-05-25 PY - 2010 AN - OPUS4-22019 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Micro-drone for the characterization and self-optimizing search of hazardous gaseous substance sources T2 - 15.ITG-/GMA-Fachtagung "Sensoren und Messsysteme 2010" T2 - 15.ITG-/GMA-Fachtagung "Sensoren und Messsysteme 2010" CY - Nuremberg, Germany DA - 2010-05-18 PY - 2010 AN - OPUS4-22020 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Schiller, J.H. A1 - Wiggerich, B. A1 - Manolov, Manol T1 - Micro-drone for the characterization and self-optimizing search of hazardous gaseous substance sources: A new approach to determine wind speed and direction T2 - ROSE 2010 - IEEE International workshop on robotic and sensors environments (Proceedings) N2 - BAM Federal Institute for Materials Research and Testing, in cooperation with the AirRobot GmbH & Co. KG company, has developed a flying remote-controlled measuring system. The system is capable of operating in a variety of scenarios of gas emissions, e.g. exhaust gas from chimneys, flue gas in a fire, gas emissions in the case of an accident of chemical or hazardous goods or in the case of a terrorist act involving toxic gases. Thus it can measure the gas concentration in the immediate vicinity of the object which causes the emission. A further stage of extension is to enhance the system for plume tracking and identification of sources of hazardous gases. T2 - ROSE 2010 - IEEE International workshop on robotic and sensors environments CY - Phoenix, Arizona, USA DA - 2010-10-15 KW - Autonomous robot KW - UAV KW - Quadrocopter KW - Mobile sensing system KW - Chemical sensing KW - Gas sensors KW - Chemical source localization KW - Plume tracking KW - Anemometric sensor KW - Wind speed and direction PY - 2010 SN - 978-1-4244-7146-1 DO - https://doi.org/10.1109/ROSE.2010.5675265 IS - Session 1 - Intelligent Sensing SP - 1 EP - 6 AN - OPUS4-22189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Asadi, S. A1 - Schiller, J.H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias T1 - An artificial potential field based sampling strategy for a gas-sensitive micro-drone T2 - IEEE/RSJ International conference on intelligent robots and systems (IROS '11) / Workshop on robotics for environmental monitoring (WREM2011) N2 - This paper presents a sampling strategy for mobile gas sensors. Sampling points are selected using a modified artificial potential field (APF) approach, which balances multiple criteria to direct sensor measurements towards locations of high mean concentration, high concentration variance and areas for which the uncertainty about the gas distribution model is still large. By selecting in each step the most often suggested close-by measurement location, the proposed approach introduces a locality constraint that allows planning suitable paths for mobile gas sensors. Initial results in simulation and in real-world experiments with a gas-sensitive micro-drone demonstrate the suitability of the proposed sampling strategy for gas distribution mapping and its use for gas source localization. T2 - IEEE/RSJ International conference on intelligent robots and systems (IROS '11) / Workshop on robotics for environmental monitoring (WREM2011) CY - San Francisco, CA, USA DA - 25.09.2011 KW - Autonomous UAV KW - Chemical sensing KW - Gas distribution modelling KW - Gas source localization KW - Gas sensors KW - Mobile sensing system KW - Quadrocopter KW - Sensor planning KW - Artificial potential field PY - 2011 SP - 34 EP - 38 AN - OPUS4-24537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. T1 - Adaptive ortsaufgelöste Gaskonzentrationsmessung mit einer Mikrodrohne JF - Technisches Messen KW - Gasmessung KW - Gasemission KW - Emissionskontrolle KW - Windvektor KW - Mikrodrohne KW - Data-Mapping KW - Gas measurement KW - Gas emission KW - Emission control KW - Wind vector KW - Micro-drone KW - Data mapping PY - 2011 DO - https://doi.org/10.1524/teme.2011.0158 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 78 IS - 10 SP - 470 EP - 478 PB - Oldenbourg CY - München AN - OPUS4-24652 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bennetts, V.H. A1 - Bartholmai, Matthias T1 - Adaptive gas source localization strategies and gas distribution mapping using a gas-sensitive micro-drone T2 - 16. ITG/GMA-Fachtagung - Sensoren und Messsysteme 2012 T2 - 16. GMA/ITG-Fachtagung 'Sensoren und Messsysteme' CY - Nürnberg, Germany DA - 2012-05-22 KW - Anemotaxis KW - Chemotaxis KW - Micro UAV KW - Bio-inspired KW - Chemical sensing KW - Gas distribution modeling KW - Gas source localization KW - Gas sensors KW - Mobile sensing system KW - Odor localization KW - Olfaction KW - Plume tracking KW - Quadrocopter PY - 2012 SN - 978-3-9813484-0-8 DO - https://doi.org/10.5162/sensoren2012/P5.4 SP - 800 EP - 809 CY - Wunstorf AN - OPUS4-26004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Asadi, S. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias A1 - Schiller, J.H. T1 - Autonomous gas-sensitive microdrone - wind vector estimation and gas distribution mapping JF - IEEE Robotics and automation magazine N2 - This article presents the development and validation of an autonomous, gas sensitive microdrone that is capable of estimating the wind vector in real time using only the onboard control unit of the microdrone and performing gas distribution mapping (DM). Two different sampling approaches are suggested to address this problem. On the one hand, a predefined trajectory is used to explore the target area with the microdrone in a real-world gas DM experiment. As an alternative sampling approach, we introduce an adaptive strategy that suggests next sampling points based on an artificial potential field (APF). Initial results in real-world experiments demonstrate the capability of the proposed adaptive sampling strategy for gas DM and its use for gas source localization. KW - Anemometric sensor KW - Autonomous micro UAV KW - Chemical sensing KW - Gas distribution modelling KW - Gas source localization KW - Gas sensors KW - Mobile sensing system KW - Quadrocopter KW - Sensor planning KW - Artificial potential field PY - 2012 DO - https://doi.org/10.1109/MRA.2012.2184671 SN - 1070-9932 VL - 19 IS - 1 SP - 50 EP - 61 PB - IEEE CY - New York, NY, USA AN - OPUS4-25773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Daum, Werner T1 - Multi-sensor systems for safety-related monitoring T2 - Sensor 2013 - 16th International conference on sensors and measurement technology (Proceedings) T2 - Sensor 2013 - 16th International conference on sensors and measurement technology CY - Nürnberg, Germany DA - 2013-05-14 KW - Multi-sensor system KW - Condition monitoring KW - Safety management KW - Hazardous scenarios KW - Data-fusion PY - 2013 SN - 978-3-9813484-3-9 DO - https://doi.org/10.5162/sensor2013/B5.2 N1 - Serientitel: AMA Conferences – Series title: AMA Conferences SP - 268 EP - 272 AN - OPUS4-28518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Bennetts, V.H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias A1 - Schiller, J.H. T1 - Gas source localization with a micro-drone using bio-inspired and particle filter-based algorithms JF - Advanced robotics N2 - Gas source localization (GSL) with mobile robots is a challenging task due to the unpredictable nature of gas dispersion, the limitations of the currents sensing technologies, and the mobility constraints of ground-based robots. This work proposes an integral solution for the GSL task, including source declaration. We present a novel pseudo-gradient-based plume tracking algorithm and a particle filter-based source declaration approach, and apply it on a gas-sensitive micro-drone. We compare the performance of the proposed system in simulations and real-world experiments against two commonly used tracking algorithms adapted for aerial exploration missions. KW - Autonomous micro UAV KW - Chemical and wind sensing KW - Gas source localization KW - Particle filter PY - 2013 DO - https://doi.org/10.1080/01691864.2013.779052 SN - 0169-1864 SP - 725 EP - 738 PB - VNU Sciences Pr. CY - Utrecht AN - OPUS4-28010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Wosniok, Aleksander A1 - Lazik, D. A1 - Bartholmai, Matthias T1 - Test field for the validation of a multifunctional sensor for distributed subsurface monitoring of gas storage areas T2 - Sensor 2013 - 16th International conference on sensors and measurement technology (Proceedings) N2 - BAM Federal Institute for Materials Research and Testing, in cooperation with the company MeGaSen UG carries out a research project to enhance and validate an innovative approach for distributed subsurface monitoring of gas storage areas. The concept combines different measurement technologies to one multifunctional sensor: membrane-based gas measurement technology for in-situ monitoring of gases in soil and fiber optical sensing of temperature and strain (as a measure for structural change). Key aspect of the research project is the first-time validation of the system in an application relevant dimension. For this purpose a 20 x 20 m2 test field is build. A comprehensive validation of the system is carried out by systematic variation of different parameters like position-dependent gasinjection, temperature and mechanical impact. T2 - Sensor 2013 - 16th International conference on sensors and measurement technology CY - Nürnberg, Germany DA - 14.05.2013 KW - Distributed multifunctional sensor KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fiber optical sensing PY - 2013 SN - 978-3-9813484-3-9 DO - https://doi.org/10.5162/sensor2013/P2.2 N1 - Serientitel: AMA Conferences – Series title: AMA Conferences SP - 713 EP - 716 AN - OPUS4-28652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Köppe, Enrico A1 - Neumann, Patrick P. T1 - Monitoring of hazardous scenarios using multi-sensor devices T2 - Sensordevices 2013 - The 4th International conference on sensor device technologies and applications T2 - Sensordevices 2013 - The 4th International conference on sensor device technologies and applications CY - Barcelona, Spain DA - 2013-08-25 KW - Multi-sensor device KW - Hazardous scenarios KW - Data-fusion PY - 2013 SN - 978-1-61208-297-4 SP - 9 EP - 13 AN - OPUS4-29069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. T1 - Fliegende Aufspürer - Gasmessung und Gasquellenlokalisierung mit einer Mikrodrohne JF - Chemie & more : Prozesstechnik KW - Mikrodrohne KW - Gasmessung KW - Gasquellenlokalisierung KW - Mobile Sensorik PY - 2013 SN - 2191-3803 VL - 4 SP - 30 EP - 33 PB - Succidia AG, Verl. und Kommunikation CY - Darmstadt AN - OPUS4-29070 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Mikrodrohne zur Gefährdungsbeurteilung im Einsatz in Gasfreisetzungsszenarien T2 - KAT 14 - 14. Berliner Katastrophenschutzforum N2 - Systementwicklung und Validierung o Motivation o Stand der Technik o Realisierung o Systemkomponenten o Integration o Gastransport o Windvektorbestimmung Anwendungsbeispiele o Mikrodrohne im Einsatz o Lokalisierung von Emissionsquellen o Erstellung von Gasverteilungskarten T2 - KAT 14 - 14. Berliner Katastrophenschutzforum CY - Berlin, Germany DA - 12.09.2013 KW - Mikrodrohne KW - Gefährdungsbeurteilung KW - Gasfreisetzung PY - 2013 SP - 1 EP - 22 AN - OPUS4-29093 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Lazik, D. T1 - Multifunctional sensor for monitoring of CO2 underground storage by comprehensive and spatially resolved measuring of gas concentrations, temperature and structural changes JF - Energy procedia N2 - One of the main unsolved issues of CCS is the comprehensive surveillance of CO2 storage areas with reasonable effort and costs. This study presents an approach for distributed subsurface monitoring of gas storage areas. The concept combines different measurement technologies to one multifunctional sensor: membrane based measurement technology for in situ monitoring of gases in soil and fibre optical sensing of temperature and strain (as a measure for structural change). A test field of application-relevant dimensions is built up to validate and optimize the technology. T2 - GHGT 11 - Greenhouse gas control technologies conference CY - Kyoto, Japan DA - 2012-11-18 KW - Multifunctional sensor KW - Distributed sensor KW - Monitoring of CO2 KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fibre optical sensing PY - 2013 UR - http://reginnovations.org/key-scientific-articles/multifunctional-sensor-monitoring-co2-underground-storage-comprehensive-spatially-resolved-measuring-gas-concentrations-temperature-structural-changes/ DO - https://doi.org/10.1016/j.egypro.2013.06.303 SN - 1876-6102 VL - 37 SP - 4033 EP - 4040 PB - Elsevier CY - Amsterdam AN - OPUS4-28910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Asadi, S. A1 - Hernandez Bennetts, V. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias T1 - Monitoring of CCS areas using micro unmanned aerial vehicles (MUAVs) JF - Energy procedia N2 - Carbon capture & storage (CCS) is one of the most promising technologies for greenhouse gas (GHG) management. However, an unsolved issue of CCS is the development of appropriate long-term monitoring systems for leak detection of the stored CO2. To complement already existing monitoring infrastructure for CO2 storage areas, and to increase the granularity of gas concentration measurements, a quickly deployable, mobile measurement device is needed. In this paper, we present an autonomous gas-sensitive micro-drone, which can be used to monitor GHG emissions, more specifically, CO2. Two different measurement strategies are proposed to address this task. First, the use of predefined sensing trajectories is evaluated for the task of gas distribution mapping using the micro-drone. Alternatively, we present an adaptive strategy, which suggests sampling points based on an artificial potential field (APF). The results of real-world experiments demonstrate the feasibility of using gas-sensitive micro-drones for GHG monitoring missions. Thus, we suggest a multi-layered surveillance system for CO2 storage areas. T2 - GHGT 11 - Greenhouse gas control technologies conference CY - Kyoto, Japan DA - 18.11.2012 KW - Gas-sensitive micro-drone KW - Gas distribution mapping KW - Sensor planning KW - Artificial potential field KW - CCS PY - 2013 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-289119 DO - https://doi.org/10.1016/j.egypro.2013.06.320 SN - 1876-6102 VL - 37 SP - 4182 EP - 4190 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-28911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Schnürmacher, M. A1 - Bennetts, V.H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias A1 - Schiller, J.H. T1 - A probabilistic gas patch path prediction approach for airborne gas ource localization in non-uniform wind fields T2 - ISOEN 2013 - 15th International symposium on olfaction and electronic nose (Proceedings) N2 - In this paper, we show that a micro unmanned aerial vehicle (UAV) equipped with commercially available gas sensors can address environmental monitoring and gas source localization (GSL) tasks. To account for the challenges of gas sensing under real-world conditions, we present a probabilistic approach for GSL that is based on a particle filter (PF). Simulation and real-world experiments demonstrate the suitability of this algorithm for micro UAV platforms. T2 - ISOEN 2013 - 15th International symposium on olfaction and electronic nose CY - Deagu, South Korea DA - 02.07.2013 KW - Autonomous micro UAV KW - Chemical and wind sensing KW - Gas source localization KW - Particle filter PY - 2013 IS - Symposia / Applications of remote and local gas sensing ... SP - 15 EP - 16 AN - OPUS4-28878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lazik, D. A1 - Ebert, Sebastian A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Pipeline monitoring with linear gas sensors T2 - 9th Pipeline technology conference 2014 (Proceedings) N2 - Comprehensive monitoring of pipelines over their full length is technically difficult and expensive. Considering a cost-benefit ratio it is reasonable to implement monitoring solutions in pipeline segments, which bear a high risk potential, like residential areas, construction sites, slopes, street or river crossings. Still such segments can measure up to several hundred meters in length, demanding for monitoring solutions that extend along such distances and enable fast response. Point wise sensing and periodical surveillance have clear drawbacks, particularly regarding early damage detection. Fibre optic sensors enable distributed sensing of temperature and strain, but they offer very limited possibilities for measuring gas concentrations. Linear membrane-based gas sensors enable the monitoring of gas concentrations alongside a pipeline. Such line-sensors are implemented in form of flexible tubes and can be arranged inside or outside the pipeline (also underwater or within the subsurface), corresponding to the technical requirements. The measuring method combines the gas specific diffusion rates through a membrane with Dalton’s law of partial pressures and enables the calculation of gas concentrations or the detection of a change of the gas composition. The objective is to detect gas leakages fast and with high reliability. Furthermore, the calibrated system enables to estimate the spatial extent of a leakage. So far the gas concentration measurement is tested for oxygen, carbon dioxide, methane; further gases should follow, e.g. hydrogen, carbon monoxide or mixtures like natural gas. The paper introduces in the different operating modes of line-sensors. A near real-time approach will be demonstrated to quantify the impact of a gas leak on the near environment. This approach is based on a critical length describing the expansion of the leaking gas. T2 - 9th Pipeline technology conference 2014 CY - Berlin, Germany DA - 12.05.2014 KW - Multi-sensor system KW - Condition monitoring KW - Safety management KW - Hazardous scenarios KW - Data fusion PY - 2014 SP - 1 EP - 9 AN - OPUS4-30727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Werner, Klaus-Dieter A1 - Ebert, Sebastian A1 - Lazik, D. T1 - Linear sensor for areal subsurface gas monitoring - calibration routine and validation experiments T2 - IEEE Sensors 2014 conference (Proceedings) N2 - Membrane based linear gas sensors and fiber optical sensors feature similar geometries and complement each other in quantities to be measured. To the author's best knowledge, it is the first time that these sensors are combined to a multifunctional sensor for distributed measuring of gas concentrations, temperature, and strain. Objective is a comprehensive monitoring of underground gas storage areas. In the presented project a 400 m² test site and a corresponding laboratory system were just built up to characterize, validate, and optimize the combined sensor. Application of the sensor lines in a grid structure should enable spatial resolution of the measurement data and early detection of relevant events, as gas leakage, temperature change, or mechanical impact. A Calibration routine was developed which can be applied subsequent to underground installation. First measurement results indicate the potential of the method, with regard to highly topical energy transport and storage issues. T2 - IEEE Sensors 2014 conference CY - Valencia, Spain DA - 02.11.2014 KW - Linear sensor KW - Distributed sensor KW - Monitoring of CO2 KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fibre optical sensing PY - 2014 SN - 978-1-4799-0161-6 DO - https://doi.org/10.1109/ICSENS.2014.6985157 SP - 942 EP - 945 AN - OPUS4-32083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Schnürmacher, M. A1 - Bennetts, V.H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias A1 - Schiller, J.H. T1 - A probabilistic gas patch path prediction approach for airborne gas source localization in non-uniform wind fields JF - Sensor letters N2 - In this paper, we show that a micro unmanned aerial vehicle (UAV) equipped with commercially available gas sensors can address environmental monitoring and gas source localization (GSL) tasks. To account for the challenges of gas sensing under real-world conditions, we present a probabilistic approach to GSL that is based on a particle filter (PF). Simulation and real-world experiments demonstrate the suitability of this algorithm for micro UAV platforms. KW - Autonomous micro UAV KW - Chemical and wind sensing KW - Gas source localization KW - Particle filter PY - 2014 DO - https://doi.org/10.1166/sl.2014.3168 SN - 1546-198X SN - 1546-1971 VL - 12 IS - 6/7 SP - 1113 EP - 1118 PB - American Scientific Publishers (ASP) CY - Stevenson Ranch, CA, USA AN - OPUS4-31525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Werner, Klaus-Dieter A1 - Erdmann, Jessica A1 - Eggeringhaus, Bärbel A1 - Kammermeier, Michael A1 - Schukar, Marcus A1 - Basedau, Frank A1 - Bartholmai, Matthias A1 - Lazik, D. A1 - Ebert, Sebastian T1 - Setup of a large scale soil test field with CO2 injection for testing a novel distributed subsurface monitoring system for gas storage areas T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) N2 - One of the main unsolved issues of under-ground storages for, e.g., CO2, H2, and natural gas is the comprehensive surveillance of these areas with reasonable effort and costs. Conventional sensors (e.g., soil air probes or borehole probes), however, can only be used for punctual or locally limited measurements; further their application can cause structural influences (invasive application). In this paper, we describe in detail the setup of a CO2 injection soil test field. This test field will be used to enhance and validate an innovative ap-proach for distributed subsurface monitoring of gas storage areas. To the author’s knowledge, this is the first time that, for this purpose, a test field is built in an application relevant scale. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 KW - Large scale soil test field KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fiber optical sensing PY - 2014 SN - 978-3-00-046740-0 SP - 238 EP - 239 AN - OPUS4-31527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Mikrodrohne zur Gasmessung in Gefahrenszenarien KW - Mikrodrohne KW - UAV KW - Gefahrenszenarien KW - Gasmessung KW - Windvektorbestimmung KW - Sensortechnik PY - 2014 SP - 1 EP - 21 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin ET - Abschlussbericht / BAM Vh 8144 AN - OPUS4-31425 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Köppe, Enrico A1 - Neumann, Patrick P. T1 - Monitoring of hazardous scenarios using multi-sensor devices and sensor data fusion JF - International journal on advances in systems and measurements N2 - The combination of different types of sensors to multi-sensor devices offers excellent potential for monitoring applications. This should be demonstrated by means of four different examples of actual developments carried out by Federal Institute for Materials Research and Testing (BAM): monitoring and indoor localization of relief forces, a micro-drone for gas measurement in hazardous scenarios, sensor-enabled radio-frequency identification (RFID) tags for safeguard of dangerous goods, and a multifunctional sensor for spatially resolved under-surface monitoring of gas storage areas. Objective of the presented projects is to increase the personal and technical safety in hazardous scenarios. These examples should point to application specific challenges for the applied components and infrastructure, and it should emphasize the potential of multi-sensor systems and sensor data fusion. KW - Monitoring KW - Multi-sensor KW - Hazardous scenarios KW - Data fusion PY - 2014 UR - http://www.iariajournals.org/systems_and_measurements/sysmea_v7_n34_2014_paged.pdf SN - 1942-261x VL - 7 IS - 3/4 SP - 193 EP - 200 PB - IARIA CY - [S.l.] AN - OPUS4-32509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bennetts, V. H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias T1 - From Insects to Micro Air Vehicles - A Comparison of Reactive Plume Tracking Strategies T2 - 13th International Conference on Intelligent Autonomous Systems (IAS) N2 - Insect behavior is a common source of inspiration for roboticists and computer scientists when designing gas-sensitive mobile robots. More specifically, tracking airborne odor plumes and localization of distant gas sources are abilities that suit practical applications such as leak localization and emission monitoring. Gas sensing with mobile robots has been mostly addressed with ground-based platforms and under simplified conditions and thus, there exist a significant gap between the outstanding insect abilities and state of the art robotics systems. As a step towards practical applications, we evaluated the performance of three biologically inspired plume tracking algorithms. The evaluation is carried out not only with computer simulations, but also with real-world experiments in which, a quadrocopter-based micro Unmanned Aerial Vehicle autonomously follows a methane trail towards the emitting source. Compared to ground robots, micro UAVs bring several advantages such as their superior steering capabilities and fewer mobility restrictions in complex terrains. The experimental evaluation shows that, under certain environmental conditions, insect like behavior in gas-sensitive UAVs is feasible in real world environments. T2 - 13th International Conference on Intelligent Autonomous Systems (IAS) CY - Padova, Italy DA - 15.07.2014 KW - Autonomous micro UAV KW - Mobile robot olfaction KW - Gas source localization KW - Reactive plume tracking KW - Biologically inspired robots PY - 2014 SP - 1 EP - 12 AN - OPUS4-43920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Petrov, Sergej A1 - Neumann, Patrick P. A1 - Werner, Klaus-Dieter A1 - Lazik, D. A1 - Bartholmai, Matthias T1 - Concept for investigating mechanical impacts on distributed subsurface gas monitoring T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) N2 - A multifunctional sensor in line shape was developed and introduced in previous work for measuring of gas concentrations, temperature change, and strain. A current field study focuses on a spatially distributed monitoring of subsurface CO2 gas storage sites in near real time. Mechanical impacts, e.g., caused by construction work, denudation, and seismic activity, can affect the integrity of underground gas storage sites. Thermal or moisture impacts, e.g., caused by weather conditions, can influence the gas distribution behavior. In this paper, we briefly describe the setup of a CO2 injection soil test field. This setup contains actuating elements for the investigation of mechanical and thermal impacts on distributed subsurface gas monitoring. A concept is given for evaluating these impacts and first experimental results are presented. T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 PY - 2015 DO - https://doi.org/10.1016/j.matpr.2016.03.060 SN - 2214-7853 VL - 3 IS - 4 SP - 1124 EP - 1128 PB - Elsevier Science CY - Zilina AN - OPUS4-34489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Ebert, Sebastian A1 - Lazik, D. A1 - Bartholmai, Matthias T1 - Inverse calibration routine for linear soil gas sensors T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) N2 - Gas sensors in linear form based on the measuring principle of gas selective permeability through a membrane were developed and introduced for the detection and quantification of gas concentrations. A current field study focuses on measuring CO2 concentrations for a spatially distributed monitoring of subsurface CO2 gas storage sites in near real time. A 400 m(2) test site and a corresponding laboratory system were built up to characterize, validate, and optimize the sensor. A calibration routine was developed, which can be applied subsequently to underground installation. First measurement results indicate the potential of the method. T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 PY - 2015 SN - 978-80-554-1094-4 DO - https://doi.org/10.1016/j.matpr.2016.03.051 SP - 68 EP - 69 CY - Zilina AN - OPUS4-34491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Lazik, D. T1 - Near real-time reconstruction of 2D soil gas distribution from a regular network of linear gas sensors T2 - Proceedings of the IEEE Sensors 2015 N2 - A monitoring method is introduced that creates, in near real-time, two-dimensional (2D) maps of the soil gas distribution. The method combines linear gas sensing technology for in-situ monitoring of gases in soil with the mapping capabilities of Computed Tomography (CT) to reconstruct spatial and temporal resolved gas distribution maps. A weighted iterative algebraic reconstruction method based on Maximum Likelihood with Expectation Maximization (MLEM) in combination with a source-by-source reconstruction approach is introduced that works with a sparse setup of orthogonally-aligned linear gas sensors. The reconstruction method successfully reduces artifact production, especially when multiple gas sources are present, allowing the discrimination between true and non-existing so-called ghost source locations. A first experimental test indicates the high potential of the proposed method for, e.g., rapid gas leak localization. T2 - IEEE Sensors 2015 CY - Busan, South Korea DA - 01.11.2015 KW - Distributed linear sensor KW - Membrane-based gas sensing KW - Subsurface monitoring KW - Gas storage areas KW - Computed tomography PY - 2015 SN - 978-1-4799-8202-8 SN - 1930-0395 SP - 1550 EP - 1553 PB - IEEE AN - OPUS4-34849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Ebert, Sebastian A1 - Neumann, Patrick P. A1 - Noske, Reinhard A1 - Rehak, W. A1 - Lazik, D. T1 - Linear gas sensor for methane based on a selectively permeable membrane T2 - AMA Conferences 2015 with SENSOR and IRS2 (Proceedings) N2 - In preliminary work, gas sensors in linear form based on the measuring principle of gas selective permeability through a membrane were developed and introduced for the detection and quantification of gas concentrations. In this study, first experimental results are presented for adapting the technology for measuring methane (CH4). A material with suitable selective permeability was identified and utilized in a sensor setup containing the gas selective membrane and a reference membrane, both integrated in a measuring cell, to which a gas stream with defined CH4 concentrations was applied. The results prove the sensor's capability for measuring methane and indicate further application potential of the method, e.g., as a robust field monitoring technology, since CH4 is the major component of natural gas, town gas, and fracking gas. T2 - AMA Conferences 2015 with SENSOR and IRS2 CY - Nuremberg, Germany DA - 19.05.2015 KW - Selective permeability KW - Quantification of gas concentrations KW - Spatially distributed monitoring KW - Gas storage sites KW - Methane measuring PY - 2015 SN - 978-3-9813484-8-4 DO - https://doi.org/10.5162/sensor2015/P8.1 SP - 833 EP - 835 AN - OPUS4-33263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Real-time wind estimation on a micro unmanned aerial vehicle using its inertial measurement unit JF - Sensors and actuators A: Physical N2 - This paper presents an approach for a quadrocoper-based micro unmanned aerial vehicle (UAV) that estimates the wind vector (speed and direction) in real-time based on measurement data of its on-board sensors only. This method does not need any additional airspeed sensor or dedicated anemometer, and thus the micro UAV's valuable payload remains free for other sensors. Wind tunnel and field tests were used to evaluate the performance of the approach. In order to quantify its accuracy, experiments are presented where data was collected with an anemometer placed in an open field with the micro UAV in flight following a predefined trajectory around the anemometer and hovering at a defined position close to it. KW - Micro unmanned aerial vehicle (UAV) KW - Quadrocopter KW - Real-time KW - Inertial measurement unit (IMU) KW - Airspeed calibration KW - Wind estimation (speed and direction) PY - 2015 DO - https://doi.org/10.1016/j.sna.2015.09.036 SN - 0924-4247 VL - 235 SP - 300 EP - 310 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-34737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. T1 - Multifunktionaler Sensor zur Überwachung von Untergrundspeichern durch flächendeckendes ortsaufgelöstes Monitoring von Gasen, Temperatur und Gefügebewegungen im Boden N2 - Untergrundspeicher für Roh- und Abfallstoffe gewinnen zunehmend an Bedeutung. Verwendet werden sie vor allem für Stoffe wie Erdgas, Wasserstoff, Erdöl und neuerdings auch für Kohlen-stoffdioxid (CO2). Diese Stoffe werden meist unter Druck in Kavernen- oder Porenspeichern einge-lagert. Die Speicher dienen einerseits zum Ausgleich von Ungleichgewichten zwischen Ange-bot/Förderung und Nachfrage/Verbrauch und zur Erhöhung der Versorgungssicherheit. Anderer-seits bestehen Konzepte Abfallstoffe oder Gefahrstoffe für die Umwelt (aktuell CO2-Speicherung) dort für lange Zeiträume einzulagern. Mit den Einlagerungsstoffen verbunden ist ein signifikantes Gefahrenpotential für Mensch und Umwelt, falls es trotz aller Sicherheitsmaßnahmen zu einem unkontrollierten Austritt dieser Stoffe kommen sollte. Daher kommt dem Monitoring derartiger Untergrundspeicher und den darüber befindlichen Bodenstrukturen eine extrem hohe Bedeutung zu. Ein hochaktuelles Beispiel, das die Überwachung entsprechender Bodenflächen fordert, ist die unterirdische CO2-Speicherung im Rahmen der CO2-Abscheidung und -Speicherung (Carbon Dioxide Capture and Storage, CCS). CCS gilt als wichtige Brückentechnologie der Energiewirtschaft und wird weltweit vorangetrieben, während die Sicherheit von Bevölkerung und Biosphäre noch kont-rovers diskutiert wird. Auch die EU setzt auf CCS und gibt in der EU-Richtlinie 2009/31 als Ziel-setzung bis 2015 vor, 15 Pilotanlagen zu bauen und in Betrieb zu nehmen. Als Bedingung für die Genehmigung der CO2-Speicherung ist explizit die Überwachung der Speicheranlagen durch Monito-ring vorgeschrieben, wobei die technisch besten Lösungen zum Einsatz kommen sollen. Das zu entwickelnde Messsystem adressiert neben den o.g. Anwendungsfeldern weitere, bei denen insbesondere die Emission von Gasen ein Risiko für Mensch und Umwelt darstellt oder wirt-schaftlichen Schaden verursachen kann. Hierzu zählen die Überwachung von Abfalldeponien, Ge-fahrgutlagerstätten, kontaminierten Altlastengebieten, Moor-, Torf-, Kohleflözen (präventive Branderkennung) und geodynamisch aktiven Regionen. Auch moderne Fördertechnologien, wie das Hot-Dry-Rock-Verfahren (HDR) zur Energiegewinnung durch Einpressen von überkritischem CO2 in den Erdkörper, das die Beweglichkeit eines Gases mit der Dichte einer Flüssigkeit kombiniert und Wärmeaustausch im Erdinneren bewirkt, bergen das Risiko unkontrollierter Gasemissionen und bedürfen der umfassenden Überwachung. KW - Verteilte Sensorik KW - Gassensor KW - CCS KW - Gasspeicher PY - 2015 DO - https://doi.org/10.2314/GBV:867138327 SP - 1 EP - 13 AN - OPUS4-43195 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Lazik, D. A1 - Bartholmai, Matthias T1 - Tomographic reconstruction of soil gas distribution from multiple gas sources based on sparse sampling JF - IEEE Sensors Journal N2 - A monitoring method is introduced that creates twodimensional (2D) maps of the soil gas distribution. The method combines linear gas sensing technology for in-situ monitoring of gases in soil with the mapping capabilities of Computed Tomography (CT) to reconstruct spatial and temporal resolved gas distribution maps. A weighted iterative algebraic reconstruction method based on Maximum Likelihood with Expectation Maximization (MLEM) in combination with a source-by-source reconstruction approach is introduced that works with a sparse setup of orthogonally-aligned linear gas sensors. The reconstruction method successfully reduces artifact production, especially when multiple gas sources are present, allowing the discrimination between true and non-existing so-called ghost source locations. Experimental validation by controlled field experiments indicates the high potential of the proposed method for rapid gas leak localization and quantification with respect to Pipeline or underground gas storage issues. KW - Computed tomography KW - Gas distribution mapping and gas source localization KW - Discrimination of multiple gas sources KW - Distributed linear sensor KW - Membrane-based gas sensing KW - Subsurface monitoring KW - Gas storage areas PY - 2016 DO - https://doi.org/10.1109/JSEN.2016.2545103 SN - 1530-437X VL - 16 IS - 11 SP - 4501 EP - 4508 PB - IEEE - Inst. Electrical Electronics Engineers Inc CY - Hoes Lane, NJ, USA AN - OPUS4-36228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bennetts, V.H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias T1 - From insects to micro air vehicles - a comparison of reactive plume tracking strategies T2 - Intelligent autonomous systems 13 - Proceedings of the 13th international conference IAS-13 N2 - Insect behavior is a common source of inspiration for roboticists and computer scientists when designing gas-sensitive mobile robots. More specifically, tracking airborne odor plumes, and localization of distant gas sources are abilities that suit practical applications such as leak localization and emission monitoring. Gas sensing with mobile robots has been mostly addressed with ground-based platforms and under simplified conditions and thus, there exist a significant gap between the outstanding insect abilities and state-of-the-art robotics systems. As a step toward practical applications, we evaluated the performance of three biologically inspired plume tracking algorithms. The evaluation is carried out not only with computer simulations, but also with real-world experiments in which, a quadrocopter-based micro Unmanned Aerial Vehicle autonomously follows a methane trail toward the emitting source. Compared to ground robots, micro UAVs bring several advantages such as their superior steering capabilities and fewer mobility restrictions in complex terrains. The experimental evaluation shows that, under certain environmental conditions, insect like behavior in gas-sensitive UAVs is feasible in real-world environments. T2 - IAS13 - 13th International conference on intelligent autonomous systems CY - Padova, Italy DA - 2014-07-15 KW - Autonomous micro UAV KW - Mobile robot olfaction KW - Gas source localization KW - Reactive plume tracking KW - Biologically inspired robots PY - 2016 SN - 978-3-319-08338-4; 978-3-319-08337-7 DO - https://doi.org/10.1007/978-3-319-08338-4_110 SN - 2194-5357 SP - 1533 EP - 1548 PB - Springer Verlag CY - Berlin, Germany AN - OPUS4-31526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Lazik, D. A1 - Bartholmai, Matthias T1 - Leak detection with linear soil gas sensors under field conditions - First experiences running a new measurement technique T2 - Proceedings of the IEEE Sensors 2016 N2 - A 400 m² soil test field with gas injection system was built up, which enables an experimental validation of linear gas sensors for specific applications and gases in an application-relevant scale. Several injection and soil watering experiments with carbon dioxide (CO2) at different days with varying boundary conditions were performed indicating the potential of the method for, e.g., rapid leakage detection with respect to Carbon Capture and Storage (CCS) issues. T2 - IEEE Sensors 2016 CY - Orlando, FL, USA DA - 30.10.2016 KW - Soil test field KW - Membrane-based linear gas sensor KW - Leak detection KW - Field conditions PY - 2016 SN - 978-1-4799-8287-5 SN - 1930-0395 SP - B-3-65, 757 EP - 759 PB - IEEE AN - OPUS4-38244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Lazik, D. T1 - Leak detection with linear soil gas sensors under field conditions - First experiences running a new measurement technique N2 - A 400 m² soil test field with gas injection system was built up, which enables an experimental validation of linear gas sensors for specific applications and gases in an application-relevant scale. Several injection and soil watering experiments with carbon dioxide (CO2) at different days with varying boundary conditions were performed indicating the potential of the method for, e.g., rapid leakage detection with respect to Carbon Capture and Storage (CCS) issues. T2 - IEEE Sensors 2016 CY - Orlando, FL, USA DA - 30.10.2016 KW - Soil test field KW - Membrane-based linear gas sensor KW - Leak detection KW - Field conditions PY - 2016 AN - OPUS4-38247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Werner, Klaus-Dieter A1 - Petrov, Sergej A1 - Bartholmai, Matthias A1 - Lazik, D. ED - Puente León, F. ED - Zagar, B. T1 - Aufbau eines großflächigen Testfeldes für verteilte Bodengassensorik und Untersuchung einer Monitoringmethode basierend auf Tomographie T1 - Setup of a large-scale test field for distributed soil gas sensors and testing of a monitoring method based on tomography JF - tm - Technisches Messen N2 - A 400 m² soil test field with gas injection system was built up for the purpose of large-scale validation, optimization, and characterization of a novel comprehensive monitoring method for underground gas storage areas. The method combines gas sensing technology with linear form factor for in-situ monitoring of gases in soil with the mapping capabilities of Computed Tomography (CT) to reconstruct time-series of gas distribution maps based on samples of orthogonally-aligned linear gas sensors. Several injection experiments with carbon dioxide (CO2) at different days with varying boundary conditions indicates the potential of the method for, e.g., rapid leakage detection with respect to Carbon Capture and Storage (CCS) issues. N2 - Zur Validierung, Optimierung und praxisnahen Demonstration eines flächendeckenden Monitoringverfahrens für Untergrundgasspeichern wurde ein 400 m² großes Testfeld mit Gasinjektionssystem auf dem BAM Testgelände Technische Sicherheit aufgebaut. Die Methode kombiniert verteilte, linienförmige Gassensorik für die In-situ-Überwachung von Gasen im Boden mit den Mapping-Fähigkeiten der Computertomographie (CT). Auf Basis von orthogonal zueinander ausgerichteten linearen Gassensoren können mit diesem Verfahren so Zeitreihen der Gasverteilung rekonstruiert werden. Experimente mit Kohlendioxid (CO2) zeigen das Potential des Verfahrens zur schnellen Lokalisierung von Leckagen auf. KW - Soil test field KW - Distributed linear sensor KW - Membrane-based gas sensing KW - Subsurface monitoring KW - Gas storage areas KW - Computed tomography PY - 2016 DO - https://doi.org/10.1515/teme-2016-0015 SN - 2196-7113 SN - 0171-8096 VL - 83 IS - 10 SP - 606 EP - 615 PB - Walter de Gruyter GmbH CY - Berlin, Deutschland AN - OPUS4-37653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Lazik, D. T1 - Validation of membrane-based linear soil gas sensors – results from repetitive CO2 injection experiments performed in the field N2 - This work presents first results from repeti-tive CO2 injection experiments performed on a recently built-up 400 m² soil test field with gas injection system. The test field contains 48 membrane-based linear gas sensors that were installed in several depths of the test field. Sensors for measuring meteorological parameters (e.g., wind / rain) and the parameters soil temperature, soil moisture, and groundwater level were installed additionally. A more de-tailed description of the test field setup can be found in. A short description of the mem-brane-based linear gas sensors’ functional prin-ciple can be found in. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Distributed linear sensor KW - Gas distribution mapping and gas source localization KW - Gas storage areas KW - Membrane-based gas sensing KW - Subsurface monitoring PY - 2016 AN - OPUS4-37643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Lazik, D. A1 - Bartholmai, Matthias ED - Aulova, Alexandra ED - Rogelj Ritonja, A. ED - Emri, I. T1 - Validation of membrane-based linear soil gas sensors – results from repetitive CO2 injection experiments performed in the field T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics - BOOK OF ABSTRACTS N2 - This work presents first results from repetitive CO2 injection experiments performed on a recently built-up 400 m² soil test field with gas injection system. The test field contains 48 membrane-based linear gas sensors that were installed in several depths of the test field. Sensors for measuring meteorological parameters (e.g., wind / rain) and the parameters soil temperature, soil moisture, and groundwater level were installed additionally. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Distributed linear sensor KW - Gas distribution mapping and gas source localization KW - Gas storage areas KW - Membrane-based gas sensing KW - Subsurface monitoring PY - 2016 SN - 978-961-94081-0-0 SP - 174 EP - 175 CY - Ljubljana AN - OPUS4-37644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrov, Sergej A1 - Neumann, Patrick P. A1 - Werner, Klaus-Dieter A1 - Wosniok, Aleksander A1 - Lazik, D. A1 - Bartholmai, Matthias ED - Nicoletto, G. ED - Pastrama, S.D. ED - Emri, I. T1 - Concept for investigating mechanical and thermal impacts on distributed subsurface gas monitoring JF - Materials Today: Proceedings N2 - A multifunctional sensor in line shape was developed and introduced in previous work for measuring of gas concentrations, temperature change, and strain. A current field study focuses on a spatially distributed monitoring of subsurface CO 2 gas storage sites in near real time. Mechanical impacts, e.g., caused by construction work, denudation, and seismic activity, can affect the integrity of underground gas storage sites. Thermal or moisture impacts, e.g., caused by weather conditions, can influence the gas Distribution behavior. In this paper, we briefly describe the setup of a CO 2 injection soil test field. This setup contains actuating elements for the investigation of mechanical and thermal impacts on distributed subsurface gas monitoring. A concept is given for evaluating these impacts and first experimental results are presented. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Linear sensor KW - Distributed sensor KW - Monitoring of CO 2 KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Fibre optical sensing PY - 2016 DO - https://doi.org/10.1016/j.matpr.2016.03.060 SN - 2214-7853 VL - 3 IS - 4 SP - 1124 EP - 1128 PB - Elsevier Ltd. AN - OPUS4-35688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Ebert, S. A1 - Lazik, D. A1 - Bartholmai, Matthias ED - Nicoletto, G. ED - Dan Pastrama, S. ED - Emri, I. T1 - Inverse calibration routine for linear soil gas sensors JF - Materials Today: Proceedings N2 - Gas sensors in linear form based on the measuring principle of gas selective permeability through a membrane were developed and introduced for the detection and quantification of gas concentrations. A current field study focuses on measuring CO2 concentrations for a spatially distributed monitoring of subsurface CO2 gas storage sites in near real time. A 400 m² test site and a corresponding laboratory system were built up to characterize, validate, and optimize the sensor. A calibration routine was developed, which can be applied subsequently to underground installation. First measurement results indicate the potential of the method. T2 - 32nd Danubia Adria Symposium on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Linear sensor KW - Distributed sensor KW - Subsurface monitoring KW - Gas storage areas KW - Membrane-based gas sensing KW - Calibration PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S221478531600256X DO - https://doi.org/doi:10.1016/j.matpr.2016.03.051 SN - 2214-7853 VL - 3 IS - 4 SP - 1074 EP - 1078 PB - Elsevier Ltd. AN - OPUS4-35633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lazik, D. A1 - Ebert, S. A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Characteristic length measurement of a subsurface gas anomaly - A monitoring approach for heterogeneous flow path distributions JF - International Journal of Greenhouse Gas Control N2 - Geogenic gases from natural sources, carbon dioxide (CO2) from a geological repository (carbon capture and storage - CCS) or a leaking gas pipeline can present serious risks in industrial and urban areas. To extend the lead time for risk treatment in such critical regions, reliable detection of gases within the shallow subsurface is required to observe critical gas accumulations before degassing into the atmosphere. A near real-time monitoring approach is introduced to determine the volumetric expansion of a leakinggas in the subsurface. Considering the pressure relaxation with the ambient air pressure, the approach enables the forecasting of the final size of a pressurized gas body in terms of characteristic lengths. According to theoretical basics, such a characteristic length, which enables us to perform a gas (safety) measurement based on a purely geometrical measure, behaves independently of subsurface properties,i.e., it enables a reliable quantification of the escaping gas irrespective of its heterogeneous or changingflow path distribution. A field test for a 10 l/min pinhole leakage injected into a 10 m long, 0.4 m wide, 0.95 m deep soil-filled trench that was equipped with linear sensors shows the lateral-vertical volumetric gas expansion along these sensors, and demonstrates the applicability of the characteristic length approach. KW - Monitoring KW - Carbon capture and storage KW - Leakage KW - Quantification KW - Subsurface KW - CO2 PY - 2016 DO - https://doi.org/10.1016/j.ijggc.2016.02.008 SN - 1750-5836 VL - 2016 IS - 47 SP - 330 EP - 341 PB - Elsevier B.V. AN - OPUS4-35425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Noske, Reinhard A1 - Rurack, Knut T1 - Fluorescence sensor for the long-term monitoring of gaseous ammonia N2 - Ammonia and its reaction products can cause considerable damage of human health and ecosystems, increasing the necessity for reliable and reversible sensors to monitor traces of gaseous ammonia in ambient air directly on-site or in the field. Although various types of gas sensors are available, fluorescence sensors have gained importance due to advantages such as high sensitivity and facile miniaturization. Here, we present the development of a sensor material for the detection of gaseous ammonia in the lower ppm to ppb range by incorporation of a fluorescent dye, which shows reversible fluorescence modulations as a function of analyte concentration, into a polymer matrix to ensure the accumulation of ammonia. A gas standard generator producing standard gas mixtures, which comply with the metrological traceability in the desired environmentally relevant measurement range, was used to calibrate the optical sensor system. To integrate the sensor material into a mobile device, a prototype of a hand-held instrument was developed, enabling straightforward data acquisition over a long period. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Ammonia gas sensor KW - Fluorescence KW - Air quality monitoring KW - Standard gas generator KW - Miniaturized sensor device PY - 2017 AN - OPUS4-43143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Tiebe, Carlo A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen T1 - Adaptable multi-sensor device for gas detection N2 - Innovation is the catalyst for the technology of the future. It is important to develop new and better technologies that can continuously monitor the environmental impact, e.g., for air quality control or emission detection. In the recently at BAM developed Universal Pump Sensor Control (UPSC3) module, different components and sensors are fused. The combination of the individual components makes the UPSC3 module an excellent monitoring and reference system for the development and characterization of gas specific sensors. Measurements over long periods are possible, for mixed gas loads or for certain gas measurements. The system is part of a mobile sensor network of several sensor units, which can also be used as standalone systems. The motivation and objective of this research is to develop gas sensors based on fluorescence detection with range of ppm / ppb. For this task a reference system is required, which contains volatile organic compound (VOC) sensors for reference data from different scenarios. The integrated multi-sensor unit can measure different gases through the integrated 3-fold VOC sensor, which can be adapted to the addressed scenario. . The system-integrated flow control, with pump and flow sensor, allows the gas molecules to be transported directly to the VOC sensor. The entire measurement is permanently stored on an integrated memory card. If the previously determined limit range is exceeded, an alarm is generated. The system is an important tool towards further developments in the field of gas sensors and is primarily used for the validation of chemically based gas sensors. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Gas detection KW - Multi sensor device KW - Pump control KW - VOC PY - 2017 AN - OPUS4-43193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A.J. T1 - Airborne Remote Gas Sensing and Mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of these kind of leaks, we developed a novel robotic platform for aerial remote gas sensing. Spectroscopic measurement methods for remote sensing of selected gases lend themselves for use on mini-copters, which offer a number of advantages for inspection and surveillance over traditional methods. No direct contact with the target gas is needed and thus the influence of the aerial platform on the measured gas plume can be kept to a minimum. This allows to overcome one of the major issues with gas-sensitive mini-copters. On the other hand, remote gas sensors, most prominently Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensors have been too bulky given the payload and energy restrictions of mini-copters. Here, we present the Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), which combines a novel lightweight TDLAS sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile hexacopter. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). It enables tomographic reconstruction of gas plumes and a localization of gas sources. We also present first results showing its performance under realistic conditions. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Localization of gas sources PY - 2017 AN - OPUS4-43204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen T1 - KonSens - Kommunizierende Sensorsysteme für die Bauteil- und Umweltüberwachung N2 - In the KonSens Project, sensor systems are developed, validated, and operated in form of functional models for the application areas Structure Integrated Sensors and Mobile Multi-gas Sensors. Key aspects are the detection and evaluation of corrosion processes in reinforced concrete structures as well as the detection and quantification of very low concentrations of toxic gases in air. The adaption of sensor principles from the lab into real-life application including appropriate communication techniques is a major task. In recent years, Structural Health Monitoring have gained in importance, since growing age of buildings and infrastructure as well as increasing load requirements demand for reliable surveillance methods. In this regard, the project follows two strategies: First, the development and implementation of completely embedded sensor systems consisting of RFID-tag and in situ sensors, and their further application potential (e.g. for precast concrete elements, roadways, wind power plants, and maritime structures). Secondly, the development of a long-term stable, miniaturized, fiber optic sensor for a ratiometric and referenced measurement of the pH-value in concrete based on fluorescence detection as an indicator for carbonation and corrosion. Environmental pollution through emission of toxic gases becomes an increasing problem not only in agriculture (e.g. biogas plants) and industry but also in urban areas. This leads to increasing demand to monitor environmental emissions as well as ambient air and industrial air components in many scenarios and in even lower concentrations than nowadays. The selectivity of luminescence-based sensors is enabled by the combination of the sensing dye and the material, which is used as accumulation medium for concentration of the analyte. This principle allows for developing gas sensors with high selectivity and sensitivity of defined substances. Additional benefits, particularly of fluorescence-based sensors, are their capability for miniaturization and potential multiplex mode. Objective is the development and implementation of sensors based on fluorescence detection for defined toxic gases (ammonia, hydrogen sulfide, ozone, and benzene) with sensitivity in the low ppm or even ppb range. Additionally, the integration of such sensors in mobile sensor devices is addressed. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - RFID sensors KW - Sensors in concrete KW - Gas sensors KW - Mobile sensors KW - Fluorescence sensors PY - 2017 AN - OPUS4-43183 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lazik, D. A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Ebert, Sebastian T1 - Characteristic length measurement of a subsurface gas anomaly - an integrating monitoring approach over heterogeneous distributed gas flow paths N2 - Geogenic gases such as CH4 or CO2 from natural sources, gases (CCS-CO2, H2, Natural gas, City gas …) from a geological repository, or a leaking gas pipeline can present serious risks in industrial and urban areas where the density of infrastructural elements increases as well as above and below ground. To extend the lead time for risk treatment in such critical regions, reliable detection of gases within the shallow subsurface is required to observe critical gas accumulations before degassing into the atmosphere. A near real-time monitoring approach is introduced to determine the volumetric expansion of such a gas escaping from a leak in the subsurface. Considering the pressure relaxation with the ambient air pressure, the approach enables the forecasting of the final size of a pressurized gas body in terms of characteristic lengths. According to theoretical basics, such a characteristic length, which allows to perform a gas (safety) measurement based on a purely geometrical measure, behaves independently of subsurface properties, i.e., it enables a reliable quantification of the escaping gas, irrespective of its heterogeneous flow path distribution. A field test for a 10 l/min pinhole leakage of CO2 injected in an unsaturated Chernozemic soil (agricultural test field Bad Lauchstädt)that was equipped with linear gas sensors demonstrates the lateral-vertical volumetric gas expansion along the environment of these gas sensors, and confirms the applicability of the new characteristic length approach. T2 - UFZ EnergyDays 2017 CY - Leipzig, Germany DA - 15.03.2017 KW - CO2 KW - Carbon capture and storage KW - Leakage KW - Monitoring PY - 2017 AN - OPUS4-39400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Lazik, D. A1 - Bartholmai, Matthias ED - Emri, Igor T1 - Validation of membrane-based linear soil gas sensors under field conditions JF - MATERIALS TODAY-PROCEEDINGS N2 - A 400 m2 soil test field with gas injection system was built up, which enables an experimental validation of linear membrane-based gas sensors – a sensor technology which was developed based on the selective permeation of gases through membranes. Several soil watering and injection experiments with carbon dioxide at different days with varying boundary conditions were performed showing that the sensor behaves mostly insensitive to the environmental conditions investigated, i.e., barometric pressure fluctuations, soil temperature, air temperature and humidity, sun duration, and wind speed. Furthermore, depending on water infiltration, a gas phase displacement could be observed in-situ based on the changed measurement signal. The results of the validation experiments highlight the potential of the method for rapid leak detection and localization qualifying the sensor particularly for safety applications, e.g., in underground gas storage areas. T2 - 33nd Danubia Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Distributed linear sensor KW - Membrane-based gas sensing KW - Subsurface monitoring KW - Gas storage areas KW - Validation PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S2214785317308404 DO - https://doi.org/10.1016/j.matpr.2017.06.065 SN - 2214-7853 VL - 4 IS - 5, Part 1 SP - 5893 EP - 5897 PB - Elsevier Ltd. AN - OPUS4-41584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A.J. T1 - Airborne Remote Gas Sensing and Mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of these kind of leaks, we developed a novel robotic platform for aerial remote gas sensing. Spectroscopic measurement methods for remote sensing of selected gases lend themselves for use on mini-copters, which offer a number of advantages for inspection and surveillance over traditional methods. No direct contact with the target gas is needed and thus the influence of the aerial platform on the measured gas plume can be kept to a minimum. This allows to overcome one of the major issues with gas-sensitive mini-copters. On the other hand, remote gas sensors, most prominently Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensors have been too bulky given the payload and energy restrictions of mini-copters. Here, we present the Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), which combines a novel lightweight TDLAS sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile hexacopter. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). It enables tomographic reconstruction of gas plumes and a localization of gas sources. We also present first results showing its performance under realistic conditions. T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2018 AN - OPUS4-44085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Banach, Ulrich A1 - Gawlitza, Kornelia A1 - Hübert, Thomas T1 - Development of a gas standard generator N2 - Pollution through emission of toxic gases is an increasing problem for the environment. It affects similarly agricultural, industrial and urban areas. In future, environmental emissions in ambient air must be monitored at even lower concentrations as nowadays. One environmental relevant compound is ammonia and its conversion product ammonium that have strong negative impact on human health and ecosystems. Most ammonia measurements in ambient air are performed in the range below 1000 nmol·mol 1 and thus there is a need for reliable traceable ammonia gas standards and in addition in situ analytical procedures for monitoring (in ambient air to avoid that thresholds are exceeded). Therefore, the use of reference materials is necessary for development accompanying test or for calibration, e. g. of structure-integrated sensors and mobile multi-gas sensors. The developed gas standard generator produces gas mixtures that comply with the metrological traceability for ammonia gas standards in the desired environmentally relevant measurement range. The method is based on the permeation of ammonia through a membrane at constant temperature and pressure. The resulting ammonia penetrant gas flow is then mixed with a carrier gas flow to generate a gas standard flow of known concentration. The dynamic rage is enlarged by using a two dilution steps. Depending on the permeation rate, generable molar fractions are possible in the range nmol·mol-1 to a few µmol·mol-1. We present the design of an ammonia gas standard generator and first results of the characterisation of its individual components supporting the uncertainty assessment according to GUM for stable gas concentrations in this range. The relative uncertainty of the generated ammonia gas standard is smaller than 4 % (k = 2). T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Permeation KW - Gas standard generator PY - 2018 AN - OPUS4-44089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Tiebe, Carlo T1 - KonSens - Kommunizierende Sensorsysteme für die Bauteil- und Umweltüberwachung N2 - Im Projekt KonSens werden für die Anwendungsbei- spiele bauteilintegrierte Sensorik für Betonkomponen- ten und mobile Multigassensorik Sensorsysteme in Form von Funktionsmustern entwickelt, validiert und angewendet. Schwerpunkte liegen einerseits in der Detektion und Bewertung von Korrosionsprozessen in Beton und andererseits in der Detektion und Quantifi- zierung sehr geringer Konzentrationen toxischer Gase in der Luft. Dabei ist die Adaption der sensorischen Methoden aus dem Labor in reale Messumgebungen inklusive geeigneter Kommunikationstechnik ein wichtiger Aspekt. T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Umweltmonitoring KW - Bauwerksüberwachung PY - 2018 AN - OPUS4-44074 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Tiebe, Carlo A1 - Johann, Sergej T1 - Adaptable multi-sensor device for gas detection N2 - Innovation is the catalyst for the technology of the future. It is important to develop new and better technologies that can continuously monitor the environmental impact, e.g., for air Quality control or emission detection. In the recently at BAM developed Universal Pump Sensor Control (UPSC3) module, different components and sensors are fused. The combination of the individual components makes the UPSC3 module an excellent monitoring and reference system for the development and characterization of gas specific sensors. Measurements over long periods are possible, for mixed gas loads or for certain gas measurements. The System is part of a mobile sensor network of several sensor units, which can also be used as standalone systems. T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Environmental monitoring PY - 2018 AN - OPUS4-44077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dzierliński, M. A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias ED - Zagrobelny, Maciej ED - Suś-Ryszkowska, Małgorzata T1 - Wykrywanie wycieków gazu za pomocą bezzałogowych pojazdów powietrznych T1 - Detection of gas leaks by unmanned aerial vehicles JF - Inspektor N2 - Wyciek metanu (CH4) z infrastruktury takiej jak rurociągi czy zbiorniki magazynowe ma kluczowe znaczenie dla środowiska oraz stwarza zagrożenie dla bezpieczeństwa ludzi i mienia. Obecnie, po okresie bezawaryjnej eksploatacji, można zaobserwować wzrost liczby incydentów spowodowanych nieszczelnościami rurociągów przesyłowych. W Polsce szczególnie problematyczne okazują się gazociągi, które powstały dekady temu. W tamtym czasie normy techniczne i przepisy budowlane były łagodniejsze niż obecnie obowiązujące. Integralność tych gazociągów jest trudna do skontrolowania, gdyż na etapie budowy nie zostały one przystosowane do badania tłokami pomiarowymi. Aby sprostać temu wyzwaniu, UDT poszukuje metod umożliwiających szybkie i niezawodne wykrywanie oraz lokalizowanie nieszczelności gazociągów na duże odległości. N2 - Methane leakage (CH4) from infrastructure such as pipelines or storage tanks is crucial for the environment and poses a threat to the safety of people and property. Today, after a period of failure-free operation, an increase in the number of incidents caused by leaks in transmission pipelines can be observed. In Poland, gas pipelines created decades ago turn out to be particularly problematic. At that time, technical standards and building regulations were milder than those currently in force. The integrity of these pipelines is difficult to control, as they were not adapted for testing with measuring pigs at the construction stage. To meet this challenge, UDT is looking for methods to quickly and reliably detect and locate leaks in pipelines over long distances. KW - Aerial robot KW - Mobile robot olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable diode laser absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2018 UR - https://www.udt.gov.pl/inspektor-on-line VL - 4 SP - 19 EP - 21 PB - Urząd Dozoru Technicznego CY - Warszawa, Polska AN - OPUS4-47062 LA - pol AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Mansurova, Maria A1 - Kohlhoff, Harald A1 - Gkertsos, Aris A1 - Neumann, Patrick P. A1 - Bell, Jérémy A1 - Bartholmai, Matthias T1 - Wireless Mobile Sensor Device for in-situ Measurements with Multiple Fluorescent Sensors T2 - Proceedings of the IEEE Sensors 2018 N2 - This paper describes a wireless mobile prototype able to perform optical measurements by means of a miniatur-ized spectrometer for low light analysis, e.g. fluorescent sensors. Evaluations, calculations, calibration management and result display are performed by a computer or a standard tablet. The device was designed primarily to detect traces of oil in drinking or ground water and for the analyses of crude oils. However, it can also address a wide range of fluorescent sensors. The fast and user-friendly inspection of water quality or oil properties, as well as the adaptability and mobility, make the device attractive for a variety of users. Further application areas could be easily imple-mented by adapting the optics and the software (database, data processing and calibration plots, etc.) T2 - IEEE Sensors 2018 CY - New Delhi, India DA - 28.10.2018 KW - Wireless mobile sensor device KW - Fluorescent sensor KW - Embedded system KW - Water quality KW - Oil PY - 2018 SN - 978-1-5386-4707-3 SP - 1067 EP - 1070 PB - IEEE CY - New Delhi, India AN - OPUS4-46556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Wind Vector Estimation on Multirotor Aircraft N2 - Small unmanned aircraft (UA) are used increasingly as flying sensor platforms. Amongst other things they are used for environmental monitoring, for example gas distribution mapping. Sometimes, these applications require knowledge of the ambient wind field, which can be measured by additional devices like anemometers. In general, it would be interesting to avoid such additional apparatuses. One way to achieve this is to estimate the wind vector, that is both the wind direction and speed, from the state variables of the UA. T2 - IEEE Sensors 2018 CY - New Delhi, India DA - 28.10.2018 KW - UAV KW - Wind vector KW - Estimation KW - Multirotor aircraft PY - 2018 AN - OPUS4-46479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Hüllmann, Dino T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources. T2 - Tag der offenen Tür auf dem Testgelände der BAM (BAM TTS) CY - Baruth/Mark - OT Horstwalde, Germany DA - 29.09.2018 KW - Mobile Robot Olfaction KW - Swarm KW - Nano aerial robot KW - Gas sensing PY - 2018 AN - OPUS4-46147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Airborne Remote Gas Sensing and Mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of These kind of leaks, we developed a novel robotic platform for aerial remote gas sensing - the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS). T2 - Tag der offenen Tür auf dem Testgelände der BAM (BAM TTS) CY - Baruth/Mark - OT Horstwalde, Germany DA - 29.09.2018 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2018 AN - OPUS4-46152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias ED - Pastramă, D. Ş ED - Constantinescu, D. M. T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring T2 - 35th Danubia - Adria Symposium on Advances in Experimental Mechanics - Extended abstracts N2 - In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Mobile Robot Olfaction KW - Swarm KW - Nano aerial robot KW - Gas sensing PY - 2018 SN - 978-606-23-0874-2 SP - 139 EP - 140 PB - PRINTECH CY - Bukarest AN - OPUS4-46137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias A1 - Hofmann, Michael T1 - VDI/VDE 3518 Technische Richtlinie für Multigassensoren N2 - Der Beitrag präsentiert die erarbeiteten technischen Richtlinien zur Anwendung und Prüfung von Multigassensoren innerhalb der Richtlinienreihe VDI/VDE 3518 sowie in diesem Zusammenhang die Möglichkeiten der Sensorprüfung im akkreditierten Prüflabor des Fachbereichs 8.1 der BAM. Im Speziellen wird das in Kürze veröffentlichte Blatt 3 der Richtlinienreihe vorgestellt, das Bezug auf Multigassensoren für geruchsbezogene Messungen mit elektronischen Nasen nimmt. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Multigassensoren KW - Prüfung KW - Richtlinie PY - 2018 AN - OPUS4-47885 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias ED - Pastramă, Ş. D. ED - Constantinescu, D. M. T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring JF - Materials Today: Proceedings N2 - In this paper, we introduce a nano aerial robot swarm for indoor air quality monitoring applications such as occupational health and safety of (industrial) workplaces. The concept combines a robotic swarm composing of nano Unmanned Aerial Vehicles (nano UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight metal oxide gas sensors for measuring the Total Volatile Organic Compound (TVOC) in ppb and estimating the eCO2 (equivalent calculated carbon-dioxide) concentration in ppm. TVOC is a measure for the indoor air quality. An indoor localization and positioning system will be used to estimate the absolute 3D position of the swarm like GPS. Based on this novel indoor air quality monitoring concept, the development and validation of new algorithms in the field of Mobile Robot Olfaction (MRO) are planned, namely gas source localization and gas distribution mapping. A test scenario will be built up to validate and optimize the gas-sensitive nano aerial robot swarm for the intended applications. T2 - 35th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Nano aerial robot KW - UAV KW - Swarm KW - Indoor air quality KW - Monitoring KW - Concept PY - 2019 DO - https://doi.org/10.1016/j.matpr.2019.03.151 SN - 2214-7853 VL - 12 IS - 2 SP - 470 EP - 473 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-48055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Baurzhan, Zhandos A1 - Tiebe, Carlo A1 - Hofmann, Michael A1 - Hüllmann, Dino A1 - Bartholmai, Matthias T1 - Indoor air quality monitoring using flying nanobots: Design and experimental study T2 - 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) Proceedings N2 - In this paper, we introduce a nano aerial robot swarm for Indoor Air Quality (IAQ) monitoring applications such as occupational health and safety of (industrial) workplaces. The robotic swarm is composed of nano Unmanned Aerial Vehicles (UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight Metal Oxide (MOX) gas sensors for measuring the Total Volatile Organic Compound (TVOC), which is a measure for IAQ. An indoor localization and positioning system is used to estimate the absolute 3D position of the swarm similar to GPS. A test scenario was built up to validate and optimize the swarm for the intended applications. Besides calibration of the IAQ sensors, we performed experiments to investigate the influence of the rotor downwash on the gas measurements at different altitudes and compared them with stationary measurements. Moreover, we did a first evaluation of the gas distribution mapping performance. Based on this novel IAQ monitoring concept, new algorithms in the field of Mobile Robot Olfaction (MRO) are planned to be developed exploiting the abilities of an aerial robotic swarm. T2 - 18th International Symposium on Olfaction and Electronic Nose CY - Fukuoka, Japan DA - 26.05.2019 KW - Nano aerial robot KW - Swarm KW - Indoor air quality KW - Monitoring PY - 2019 SN - 978-1-5386-3641-1 SP - 1 EP - 3 PB - IEEE CY - USA AN - OPUS4-48148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Zemčík, Robert ED - Krystek, Jan T1 - Influence of rotor downwash on vertically displaced nanobots in flight T2 - 36th Danubia - Adria Symposium on Advances in Experimental Mechanics - Extended abstracts N2 - Using a swarm of copter-based gas-sensitive aerial nano robots for monitoring indoor air quality is challenging due to, e.g., limited air space in buildings. To avoid an over-regulation of the available indoor air space (e.g., prohibit copters to fly above each other), a safety region around each copter must be defined to guarantee a safe operation of the swarm. The key contributions of this paper are the realization of experiments that investigate the influence of the rotor downwash on flying vertically displaced nano robots and the development of a model describing the above-mentioned safety region. T2 - 36th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Gas sensing KW - Mobile Robot Olfaction KW - Nano aerial robot KW - Swarm PY - 2019 SP - 23 EP - 24 CY - Plzeň AN - OPUS4-49173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Scheuschner, Nils A1 - Bartholmai, Matthias A1 - Lilienthal, A.J. T1 - Experimental Validation of the Cone-Shaped Remote Gas Sensor Model T2 - Proceedings of the IEEE Sensors 2019 N2 - Remote gas sensors mounted on mobile robots enable the mapping of gas distributions in large or hardly accessible areas. A challenging task, however, is the generation of threedimensional distribution maps from these gas measurements. Suitable reconstruction algorithms can be adapted, for instance, from the field of computed tomography (CT), but both their performance and strategies for selecting optimal measuring poses must be evaluated. For this purpose simulations are used, since, in contrast to field tests, they allow repeatable conditions. Although several simulation tools exist, they lack realistic models of remote gas sensors. Recently, we introduced a model for a Tunable Diode Laser Absorption Spectroscopy (TDLAS) gas sensor taking into account the conical shape of its laser beam. However, the novel model has not yet been validated with experiments. In this paper, we compare our model with a real sensor device and show that the assumptions made hold. T2 - IEEE Sensors 2019 CY - Montreal, Canada DA - 27.10.2019 KW - Remote gas sensor model KW - TDLAS KW - Gas dispersion simulation PY - 2019 SN - 978-1-7281-1634-1 SP - 104 EP - 107 PB - IEEE AN - OPUS4-49548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Kohlhoff, Harald A1 - Bartholmai, Matthias A1 - Bennetts, V. H. A1 - Lilienthal, A. J. T1 - Remote Gas Sensing with Multicopter-Platforms T2 - Tagungsband des zweiten Innovationsforums: Autonome, mobile Dienste – Services für Mobilität N2 - This presentation gives an introduction to the gas-sensitive aerial robots developed at BAM, including various application examples in the field of mobile robot olfaction: gas source localization and gas distribution mapping. T2 - Zweites Innovationsforum "Autonome, mobile Dienste; Services für Mobilität" CY - Berlin, Germany DA - 04.06.2019 KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS); UAV-REGAS KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Nano UAV Swarm KW - Tomographic reconstruction of gas plumes PY - 2019 UR - http://modisem.de/files/Ereignisse/2019-06/Innovationsforum_Downloads/IF2_2019_Tagungsband_WEB.pdf SN - 978-3-942709-22-4 N1 - Tagungsband auf Deutsch, Beitrag auf Englisch. VL - 2019 SP - 24 EP - 34 AN - OPUS4-48699 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Dzierliński, M. A1 - Lilienthal, A. J. A1 - Bartholmai, Matthias T1 - Aerial-based gas tomography – from single beams to complex gas distributions JF - European Journal of Remote Sensing N2 - In this paper, we present and validate the concept of an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) gas sensor with a 3-axis aerial stabilization gimbal for aiming at a versatile octocopter. While the TDLAS sensor provides integral gas concentration measurements, it does not measure the distance traveled by the laser diode’s beam nor the distribution of gas along the optical path. Thus, we complement the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from a set of integral concentration measurements. To allow for a fundamental ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present results showing its performance characteristics and 2D plume reconstruction capabilities under realistic conditions. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). KW - Aerial robot olfaction KW - Mobile robot olfaction KW - Gas tomography KW - TDLAS KW - Plume PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-487843 DO - https://doi.org/10.1080/22797254.2019.1640078 SP - 1 EP - 16 PB - Taylor & Francis CY - London AN - OPUS4-48784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Baurzhan, Zhandos A1 - Tiebe, Carlo A1 - Hofmann, Michael A1 - Hüllmann, Dino A1 - Bartholmai, Matthias T1 - Indoor air quality monitoring using flying nanobots: Design and experimental study T2 - 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) N2 - In this paper, we introduce a nano aerial robot swarm for Indoor Air Quality (IAQ) monitoring applications such as occupational health and safety of (industrial) workplaces. The robotic swarm is composed of nano Unmanned Aerial Vehicles (UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight Metal Oxide (MOX) gas sensors for measuring the Total Volatile Organic Compound (TVOC), which is a measure for IAQ. An indoor localization and positioning system is used to estimate the absolute 3D position of the swarm similar to GPS. A test scenario was built up to validate and optimize the swarm for the intended applications. Besides calibration of the IAQ sensors, we performed experiments to investigate the influence of the rotor downwash on the gas measurements at different altitudes and compared them with stationary measurements. Moreover, we did a first evaluation of the gas distribution mapping performance. Based on this novel IAQ monitoring concept, new algorithms in the field of Mobile Robot Olfaction (MRO) are planned to be developed exploiting the abilities of an aerial robotic swarm. T2 - 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) CY - Fukuoka, Japan DA - 26.05.2019 KW - Indoor air quality KW - Nano aerial robot KW - Aerial robot olfaction KW - Swarm KW - Gas detector PY - 2019 SN - 978-1-5386-8327-9 SN - 978-1-5386-8328-6 DO - https://doi.org/10.1109/ISOEN.2019.8823496 SP - 1 EP - 3 PB - IEEE AN - OPUS4-48920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias A1 - Tiebe, Carlo T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Gas sensing KW - Mobile Robot Olfaction KW - Nano aerial robot KW - Swarm PY - 2019 AN - OPUS4-47799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias A1 - Tiebe, Carlo A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Gas Tomography Up In The Air! N2 - In this paper, we present an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS) combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile octocopter. The TDLAS sensor provides integral gas concentration measurements but no information regarding the distance traveled by the laser diode's beam or the distribution of the gas along the optical path. We complemented the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from these integral concentration measurements. To allow for a rudimentary ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present first results showing the 2D plume reconstruction capabilities of the system under realistic conditions. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Aerial robot KW - Gas tomography KW - Plume KW - TDLAS PY - 2019 AN - OPUS4-47800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Tiebe, Carlo T1 - KonSens (Kommunizierende Sensorsysteme für die Bauteil- und Umweltüberwachung) - Projektergebnisse N2 - Im Projekt KonSens werden für die Anwendungsbeispiele bauteilintegrierte Sensorik für Betonkomponenten und mobile Multigassensorik Sensorsysteme in Form von Funktionsmustern entwickelt, validiert und angewendet. Schwerpunkte liegen einerseits in der Detektion und Bewertung von Korrosionsprozessen in Beton und andererseits in der Detektion und Quantifizierung sehr geringer Konzentrationen toxischer Gase in der Luft. Dabei ist die Adaption der sensorischen Methoden aus dem Labor in reale Messumgebungen inklusive geeigneter Kommunikationstechnik ein wichtiger Aspekt. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Umweltmonitoring KW - Bauwerksüberwachung KW - RFID-Sensorsysteme KW - pH-Sensor KW - Fluoreszenzsensoren PY - 2019 AN - OPUS4-47763 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Tiebe, Carlo A1 - Paul, Niels A1 - Lilienthal, A. J. T1 - Wind Vector Estimation on Multirotor Aircraft N2 - An equation for wind vector estimation using a multirotor aircraft as a flying anemometer is shown. To compute the wind vector an estimate of the thrust of the aircraft is required, which is related to the rotational speed of the rotors. Hence, a sensing system for the rotational speed using phototransistors is presented. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Anemometer KW - Phototransistor KW - Thrust KW - Wind PY - 2019 AN - OPUS4-47801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jacobasch, Stefan A1 - Duffner, Eric A1 - Goedecke, Thomas A1 - Portella, Pedro Dolabella A1 - Mair, Georg A1 - Schendler, Thomas A1 - Gradt, Thomas A1 - Askar, Enis A1 - Bartholmai, Matthias A1 - Schröder, Volkmar A1 - Maiwald, Michael A1 - Holtappels, Kai A1 - Tschirschwitz, Rico A1 - Neumann, Patrick P. T1 - Unser Beitrag zum Thema Wasserstoff N2 - Die BAM ist nahezu über die gesamte Wertschöpfungskette hinweg wissenschaftlich tätig. Von der sicheren und effizienten Wasserstofferzeugung (POWER-to-GAS), über die (Zwischen-)Speicherung von Wasserstoff in Druckgasspeichern bis hin zum Transport bspw. mittels Trailerfahrzeug zum Endverbraucher. Komplettiert werden die Aktivitäten der BAM durch die sicherheitstechnische Beurteilung von wasserstoffhaltigen Gasgemischen, die Verträglichkeitsbewertung von Werkstoffen bis hin zur Detektion von Wasserstoffkonzentrationen über geeignete Sensorik, auch mittels ferngesteuerter Messdrohnen (sog. UAV-Drohnen). Zudem untersucht die BAM proaktiv Schadensrisiken und Unfallszenarien für die Sicherheitsbetrachtung, um mögliche Schwachstellen aufzeigen und potenzielle Gefährdungen erkennen zu können. KW - Wasserstoff KW - Wasserstofferzeugung KW - Energiespeicherung KW - Gasdetektion KW - Risikoanalyse KW - Power-to-Gas KW - Explosionsschutz KW - Tribologie KW - Druckgasspeicher KW - Glasspeicher KW - Gassensorik KW - Mini-UAV PY - 2019 SP - 1 CY - Berlin AN - OPUS4-47960 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Zemčík, R. ED - Krystek, J. T1 - Influence of rotor downwash on vertically displaced nanobots in flight JF - Materials Today: Proceedings N2 - One challenge associated with navigating a nano aerial robot swarm indoors in unstructured environments is, i.a., the limited air space. To avoid an over-regulation of the available indoor air space (e.g., prohibit copters to fly above each other), a safety region around each copter must be defined. In this paper, we investigate the impact of the downwash of a nano-drone on the stability of another nearby nano-drone. In the experiments, we found out that this downwash has a negative influence of a second nano-drone in a distance of around 1 m vertically and 0.2 m horizontally. Based on the obtained data, we developed a model describing the above-mentioned safety region to enable a safe operation of the swarm in these environments with fewer constraints. T2 - 36th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Mobile Robot Olfaction KW - Nano aerial robot KW - Swarm KW - Collision-free navigation KW - Safety region model PY - 2020 DO - https://doi.org/10.1016/j.matpr.2020.03.047 VL - 32 IS - 2 SP - 108 EP - 111 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias T1 - Flying Ant Robot – Aerial Chemical Trail Detection and Localization T2 - Proceedings of the IEEE Sensors 2021 N2 - This paper presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize the chemical trail, a novel detection criterion was developed that uses only relative changes in the transient phase of the sensor response, making it more robust in its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot is able to correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - IEEE Sensors 2021 CY - Online meeting DA - 31.10.2021 KW - Nano aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2021 DO - https://doi.org/10.1109/sensors47087.2021.9639857 SP - 1 EP - 4 PB - IEEE AN - OPUS4-53933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Holl, H. T1 - Aerial Chemical-Trail Detection and Localization T2 - 37th Danubia - Adria Symposium on Advances in Experimental Mechanics: Extendet abstracts N2 - This paper presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize the chemical trail, a novel detection criterion was developed that uses only relative changes in the transient phase of the sensor response, making it more robust in its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot is able to correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - 37th Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Linz, Austria DA - 21.09.2021 KW - Nano aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2021 SN - 978-3-9504997-0-4 VL - 2021 SP - 39 EP - 40 AN - OPUS4-53409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Holl, H. T1 - Flying ant robot for chemical trail detection and localization JF - Materials Today: Proceedings N2 - This paper presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize a 5 cm wide chemical trail, a detection criterion was developed that uses only relative changes in the transient phase of the sensor response. The reduction in signal strength dependence improves the robustness of its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot can correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - 37th Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Linz, Austria DA - 21.09.2021 KW - Aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2022 DO - https://doi.org/10.1016/j.matpr.2022.02.594 SN - 2214-7853 VL - 62 SP - 2462 EP - 2465 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-54507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nattuveettil, Keerthana A1 - Brunner, Nanine A1 - Tiebe, Carlo A1 - Melzer, Michael A1 - Johann, Sergej A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Einsatz von Sensortechnologien an einer Wasserstofftankstelle als Beitrag zur digitalen Qualitätsinfrastruktur T1 - Use of sensor technologies at hydrogen test platform as a part of QI Digital N2 - Die Optimierung und Validierung des digitalen Wasserstofftankstellenmanagements mit Sensortechnologien ist das übergeordnete Ziel des Teilprojekts Digitale Qualitätsinfrastruktur mit Sensortechnologien (QIST) am Use Case H2, im Rahmen der digitalen Qualitätsinfrastruktur (QI digital[1]). Hierfür sollen u.a. Sensornetzwerke mit digital-gestützten Auswertungsstrategien intelligent gestaltet werden (Stichwort KI bzw. digitaler Zwilling). Verschiedene, sich ergänzende Sensoren, Systemkomponenten und KI-Methoden stehen als Bausteine intelligenter Sensorsysteme zur Verfügung, mit dem Zweck, die physikalischen und chemischen Parameter an und in Anlagen umfassend und effizient zu überwachen sowie Fehlfunktionen zuverlässig zu detektieren und zu interpretieren, Abbildung 1. Konkrete Arbeitsschritte sind, nach dem Aufbau der Versuchsplattform „Wasserstofftankstelle“, die Instrumentierung von Sensorik und deren digitale Integration in das Tankstellenmanagementsystem sowie die Validierung im Realbetrieb. Die somit erzielten Messergebisse sowie die Messunsicherheiten, Historien und Verfahren werden in digitaler Form aufbereitet, gespeichert und fortlaufend in die KI-basierte Datenauswertung einbezogen, inkl. der Anbindung an die metrologische Rückführungskette. Ziele sind: • Einführung eines neuen messtechnischen Ansatzes und eines digitalen Zwillings für den Anwendungsfall "Wasserstofftankstelle" auf Basis der H2-Sensorik sowie der Zustandsgrößen Druck und Temperatur • Qualitätssicherung durch Applikationen zuverlässiger Gassensorik, Manometer und Thermometer sowie KI-Methoden zur Prozesskontrolle und Detektion von Fehlfunktionen • Nutzung von digitalen Kalibrierscheinen (DCCs) insbesondere für die Messgröße Temperatur zur Realisierung der metrologischen Rückführung in einer digitalen Qualitätsinfrastruktur T2 - Sensorik für die Digitalisierung chemischer Produktionsanlagen CY - Frankfurt a. M., Germany DA - 13.06.2022 KW - QI Digital KW - H2Safety@BAM KW - Wasserstoff KW - Hydrogen KW - Sensorik KW - Digitalisierung KW - Digitalisation PY - 2022 AN - OPUS4-55399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nattuveettil, Keerthana A1 - Brunner, Nanine A1 - Tiebe, Carlo A1 - Thomas, Marcus A1 - Melzer, Michael A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Neumann, Patrick P. T1 - Digital approach of certification in Quality Infrastructure T2 - SMSI-2023-Proceedings / Chapter A3 - Metrology in the digital age N2 - QI-Digital is a joined project aiming at digitalising Quality Infrastructure (QI) processes involving standardization, conformity assessment, accreditation, metrology, and market surveillance [1]. Federal institute of material research and testing (BAM) is working on the creation of a digital calibration certifi-cate (DCC) to achieve digital metrological traceability and conformity assessment. The utilisation of machine readable and executable DCCs in the XML format is demonstrated on an example of a tem-perature measurement at a hydrogen refueling station. The certificates will be retrieved and analysed automatically at a Process Control System or at a Digital Twin. T2 - SMSI 2023 Conference CY - Nürnberg, Germany DA - 08.05.2023 KW - Quality Infrastructure KW - Digital Certificates KW - Temperature calibration KW - Digitalisation KW - Hydrogen technology PY - 2023 DO - https://doi.org/10.5162/SMSI2023/A3.4 SP - 51 EP - 52 PB - AMA Service GmbH CY - Wunstorf AN - OPUS4-57964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Grotelüschen, Bjarne A1 - Bartholmai, Matthias A1 - Strangfeld, Christoph ED - Kossa, A. ED - Kiss, R. T1 - Towards Autonomous NDT Inspection: Setup and Validation of an Indoor Localization System T2 - 39th Danubia-Adria Symposium on Advances in Experimental Mechanics - Book of Abstracts N2 - Monitoring and maintenance of civil infrastructure are of great importance, as any undetected damage can cause high repair costs, unintended deadtime, or endanger structural integrity. The inspection of large concrete structures such as bridges and parking lots is particularly challenging and time-consuming. Traditional methods are mostly manual and involve mapping a grid of measurement lines to record the position of each measurement. Current semi-automated methods, on the other hand, use GPS or tachymeters for localization but still require trained personnel to operate. An entirely automated approach using mobile robots would be more cost- and time-efficient. While there have been developments in using GPS-enabled mobile robots for bridge inspection, the weak signal strength in indoor areas poses a challenge for the automated inspection of structures such as parking lots. This paper aims to develop a solution for the automated inspection of large indoor concrete structures by addressing the problem of robot localization in indoor spaces and the automated measurement of concrete cover and rebar detection. T2 - 39th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Siófok, Hungary DA - 26.09.2023 KW - NDT Inspection KW - Mobile Robot KW - Indoor Localization KW - Setup and Validation PY - 2023 SN - 978-963-421-927-9 SP - 88 EP - 89 PB - Hungarian Scientific Society of Mechanical Engineering (GTE) CY - Siófok, Hungary AN - OPUS4-58660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Grotelüschen, Bjarne A1 - Strangfeld, Christoph T1 - Towards Autonomous NDT Inspection: Setup and Validation of an Indoor Localization System N2 - Monitoring and maintenance of civil infrastructure are of great importance, as any undetected damage can cause high repair costs, unintended deadtime, or endanger structural integrity. The inspection of large concrete structures such as bridges and parking lots is particularly challenging and time-consuming. Traditional methods are mostly manual and involve mapping a grid of measurement lines to record the position of each measurement. Current semi-automated methods, on the other hand, use GPS or tachymeters for localization but still require trained personnel to operate. An entirely automated approach using mobile robots would be more cost- and time-efficient. While there have been developments in using GPS-enabled mobile robots for bridge inspection, the weak signal strength in indoor areas poses a challenge for the automated inspection of structures such as parking lots. This paper aims to develop a solution for the automated inspection of large indoor concrete structures by addressing the problem of robot localization in indoor spaces and the automated measurement of concrete cover and rebar detection. T2 - 39th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Siófok, Hungary DA - 26.09.2023 KW - NDT Inspection KW - Mobile Robot KW - Indoor Localization KW - Setup and Validation PY - 2023 AN - OPUS4-58662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansurova, Maria A1 - Gotor, Raúl A1 - Johann, Sergej A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Rurack, Knut A1 - Bell, Jérémy T1 - Fluorescent Hydrophobic Test Strips with Sterically Integrated Molecular Rotors for the Detection of Hydrocarbons in Water and Soil with an Embedded Optical Read-Out JF - Energy and Fuels N2 - Contamination of natural bodies of water or soil with oils and lubricants (or generally, hydrocarbon derivatives such as petrol, fuels, and others) is a commonly found phenomenon around the world due to the extensive production, transfer, and use of fossil fuels. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPHs) in water and soil. The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 2-[ethyl[4-[2-(4-nitrophenyl)ethenyl]phenyl]amino]ethanol (4-DNS-OH). This dye is embedded in a hydrophobic polymeric matrix (polyvinylidene fluoride), avoiding interactions with water and providing a robust support for use in a test strip fashion. Together with the strips, an embedded optical system was designed for fluorescence signal read-out, featuring a Bluetooth low-energy connection to a commercial tablet device for data processing and analysis. This system works for the detection and quantification of TPHs in water and soil through a simple extraction protocol using a cycloalkane solvent with a limit of detection of 6 ppm. Assays in surface and sea waters were conclusive, proving the feasibility of the method for in-the-field operation. KW - Test strip KW - Sensor KW - Smartphone KW - Fluorescence KW - Test Streifen KW - Sensoren KW - Fluoreszenz KW - Petrol KW - Öl PY - 2023 DO - https://doi.org/10.1021/acs.energyfuels.3c01175 SN - 0887-0624 SP - 1 EP - 6 PB - American Chemical Society CY - Washington, United States AN - OPUS4-57892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -