TY - JOUR A1 - Hartwig, A. A1 - Pütz, D. A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Wendschuh-Josties, M. T1 - Combustion behaviour of epoxide based nanocomposites with ammonium and phosponium bentonites N2 - The influence of different organobentonites on the decomposition and the combustion behaviour of an epoxy resin were examined. The epoxy resin is a cationically polymerised cycloaliphatic epoxy resin flexibilised with poly(tetrahydrofuran) (PTHF), with hydroxyl endgroups. The bentonite was modified with either an ammonium or a phosphonium salt. The thermal decomposition of the PTHF induced by the initiator, used for the cationic polymerisation, did neither take place for the nanocomposite based on the ammonium bentonite nor for that based on the phosphonium bentonite. This improved decomposition characteristic lead to a larger time to ignition for both kinds of nanocomposites compared to the not modified polymer, which is not the case for other polymer/clay nanocomposites described in the literature. The fire behaviour was investigated using limiting oxygen index (LOI), a horizontal burner test and a cone calorimeter. The forced flaming conditions in the cone calorimeter were varied using different external heat fluxes between 30 and 70 kW · m-2. The fire behaviour of the nanocomposites was improved in comparison to the polymer, and phosphonium bentonite was superior to ammonium bentonite. The main mechanism is a barrier formation resulting in a reduction of the fire growth rate, which was more pronounced in the case of high external heat fluxes. KW - Cationic polymerisation KW - Clay KW - Combustion KW - Degradation KW - Epoxide KW - Nanocomposite PY - 2003 U6 - https://doi.org/10.1002/macp.200300047 SN - 1022-1352 SN - 1521-3935 VL - 204 IS - 18 SP - 2247 EP - 2257 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-2801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Schriever, Robert A1 - Schartel, Bernhard T1 - Influence of external heat flux and coating thickness on the thermal insulation properties of two different intumescent coatings using cone calorimeter and numerical analysis N2 - Polymeric intumescent coatings are fire protective materials that increase their thermal resistance when exposed to high temperatures to prevent building structures from damage. The idea of the investigation was to develop a simple test method to determine the time dependent thermal conductivity of intumescent coatings. Therefore steel plates were coated with two different intumescent systems. During cone calorimeter tests the temperature at the back side of the coated plates was measured. These results were used to calculate the time dependent thermal resistance of the protective layer with the simulation program IOPT2D for different external heat fluxes and different layer thickness. KW - Intumescent coatings KW - Thermal resistance KW - Cone calorimetry KW - Numerical analysis PY - 2003 U6 - https://doi.org/10.1002/fam.823 SN - 0308-0501 SN - 1099-1018 VL - 27 IS - 4 SP - 151 EP - 162 PB - Heyden CY - London AN - OPUS4-2633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -