TY - CONF A1 - Moufid, M. A1 - Tiebe, Carlo A1 - El Bari, N. A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Advance in electronic nose technology developed for the detection and discrimination of ethanol, ammonia, and hydrogen sulfide gases N2 - This work focuses on the design and fabrication of low-cost and fast-response of an electronic nose (E-nose) based on semiconductor gas sensors, for discriminating some synthetic gases such as ammonia (NH3), ethanol (C2H5OH), and hydrogen sulfide (H2S). Additionally, the capability of separating different concentration levels of each considered gases was checked. Dataset treatment of E-nose by using Principal Component Analysis (PCA) showed a good discrimination of the different synthetic gases. Furthermore, perfect classification was reached of different concentration levels of the analysed gases by using Discriminant Function Analysis (DFA). In the light of these results, it could be stated that the developed E-nose system constitutes an inexpensive, rapid, simple to use, and efficient tool for synthetic gases detection. T2 - IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) CY - Aveiro, Portugal DA - 29.05.2022 KW - Electronic nose KW - Metal oxide semiconductor KW - Chemometric techniques KW - Environmental analysis PY - 2022 SN - 978-1-6654-5860-3 U6 - https://doi.org/10.1109/ISOEN54820.2022.9789636 SP - 1 EP - 3 AN - OPUS4-56574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Holl, H. T1 - Flying ant robot for chemical trail detection and localization N2 - This paper presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize a 5 cm wide chemical trail, a detection criterion was developed that uses only relative changes in the transient phase of the sensor response. The reduction in signal strength dependence improves the robustness of its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot can correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - 37th Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Linz, Austria DA - 21.09.2021 KW - Aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2022 U6 - https://doi.org/10.1016/j.matpr.2022.02.594 SN - 2214-7853 VL - 62 SP - 2462 EP - 2465 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-54507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias T1 - Flying Ant Robot – Aerial Chemical Trail Detection and Localization N2 - This paper presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize the chemical trail, a novel detection criterion was developed that uses only relative changes in the transient phase of the sensor response, making it more robust in its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot is able to correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - IEEE Sensors 2021 CY - Online meeting DA - 31.10.2021 KW - Nano aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2021 U6 - https://doi.org/10.1109/sensors47087.2021.9639857 SP - 1 EP - 4 PB - IEEE AN - OPUS4-53933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moufid, M. A1 - Bouchikhi, B. A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - El Bari, N. T1 - Assessment of outdoor odor emissions from polluted sites using simultaneous thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS), electronic nose in conjunction with advanced multivariate statistical approaches N2 - Poor air quality, particularly in urban areas, causes various diseases and degrades living standards. Air Quality could be affected by emissions of odor, Volatile Organic Compounds (VOCs), and other gases. Therefore, assessment and monitoring of odorous air quality using sensitive, simple, rapid, accurate and portable tools is very important for public health. This study aimed to characterize odor emissions to detect malfunctions in facilities and to prevent air pollution and olfactory nuisance in the environment. A gas chromatographic method, in conjunction with sensorial analysis were performed for odorous air samples analysis collected from neighborhood of Meknes city (Morocco). Advanced multivariate statistical approaches, such as Principal Components Analysis (PCA), Discriminant Function Analysis (DFA), Support Vector Machines (SVMs), and Hierarchical Cluster Analysis (HCA), were used to describe samples similarities. The electronic nose (e-nose) data processing exhibits a satisfactory discrimination between the odorous air samples. Twenty-four VOCs with known molecular formulas were identified with Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). A validated Partial Least Square (PLS) model foresees good calibration between e-nose measurement and TD-GCMS analysis. The finding indicates that TD-GC–MS approach in conjunction with e-nose unit could be suitable tool for environmental measurement-based odor emissions. KW - Electronic nose KW - TD-GC-MS KW - PLS regression KW - Multivariate analysis KW - Outdoor odor emissions PY - 2021 U6 - https://doi.org/10.1016/j.atmosenv.2021.118449 SN - 1352-2310 VL - 256 SP - 118449 PB - Elsevier Ltd. AN - OPUS4-52626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moufid, M. A1 - Tiebe, Carlo A1 - El Bari, N. A1 - Hamada, D. A. A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Pollution parameters evaluation of wastewater collected at different treatment stages from wastewater treatment plant based on E-nose and E-tongue systems combined with chemometric techniques N2 - Wastewater contains harmful chemicals and heavy metals that are known to cause various environmental and health problems. Therefore, the water quality control using sensitive, simple, fast, accurate, and portable tools is of great importance. This study aimed to evaluate the pollution parameters of wastewaters collected at different treatment stages from a wastewater treatment plant (WWTP) that treats domestic and industrial wastewaters by using an electronic nose (E-nose) and a voltammetric electronic tongue (E-tongue) combined with chemometric techniques. Water and wastewater pollution parameters determination were performed using inductively coupled plasma optical emission spectrometry for the determination of cations, and anions by using ion chromatography. Chemometric techniques, such as Principal Component Analysis (PCA), Discriminant Function Analysis (DFA), Support Vector Machines (SVMs), and Hierarchical Cluster Analysis (HCA), were used to process the E-nose and E-tongue datasets to describe the similarities between the samples. In addition, Partial Least Squares Regression (PLSR) model was constructed using electronic sensing data to simultaneously predict the concentration values of physicochemical parameters. The obtained correlation coefficient, for training and testing sets, is higher than 0.91 for the prediction of the concentration of all physicochemical parameters, except for iron (Fe) which remains 0.84. These results suggest that simple, portable, and inexpensive tools such as electronic nose and tongue are suitable for wastewater analysis. KW - Wastewater KW - Electronic nose KW - Voltammetric electronic tongue KW - Water quality control KW - Chemometric techniques KW - Gas sensing PY - 2022 U6 - https://doi.org/10.1016/j.chemolab.2022.104593 VL - 227 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-55652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias ED - Pastramă, Ş. D. ED - Constantinescu, D. M. T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In this paper, we introduce a nano aerial robot swarm for indoor air quality monitoring applications such as occupational health and safety of (industrial) workplaces. The concept combines a robotic swarm composing of nano Unmanned Aerial Vehicles (nano UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight metal oxide gas sensors for measuring the Total Volatile Organic Compound (TVOC) in ppb and estimating the eCO2 (equivalent calculated carbon-dioxide) concentration in ppm. TVOC is a measure for the indoor air quality. An indoor localization and positioning system will be used to estimate the absolute 3D position of the swarm like GPS. Based on this novel indoor air quality monitoring concept, the development and validation of new algorithms in the field of Mobile Robot Olfaction (MRO) are planned, namely gas source localization and gas distribution mapping. A test scenario will be built up to validate and optimize the gas-sensitive nano aerial robot swarm for the intended applications. T2 - 35th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Nano aerial robot KW - UAV KW - Swarm KW - Indoor air quality KW - Monitoring KW - Concept PY - 2019 U6 - https://doi.org/10.1016/j.matpr.2019.03.151 SN - 2214-7853 VL - 12 IS - 2 SP - 470 EP - 473 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-48055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moufid, M. A1 - Hofmann, Michael A1 - El Bari, N. A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Wastewater monitoring by means of e-nose, VE-tongue, TD-GC-MS, and SPME-GC-MS N2 - The presence of wastewater and air pollution has become an important risk factor for citizens, not only in terms of problems related to health risks, but also because of its negative impact on the country's image. For this reason, malodorous emission monitoring and control techniques are in high demand in urban areas and industries. The aim of this work is first to build an electronic nose (e-nose) and a Voltammetric Electronic tongue (VE-tongue) in order to study their ability to discriminate between polluted and clean environmental samples. Secondly, Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS), and Solid Phase Micro Extraction-Gas Chromatography–Mass Spectrometry (SPME-GC-MS) are utilized to explain this discrimination by identifying specific compounds from these samples. Indeed, the e-nose, consisted of metal oxide semiconductor gas sensors, is used for the assessment of the studied odorous air and headspace samples from water and wastewater sites. Moreover, the VE-tongue, based on metal electrodes, is utilized to determine the patterns of the sensor array responses, which serve as fingerprints profiles of the analyzed liquid samples. Chemometric tools, such as Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and Support Vector Machines (SVMs) are operated for the processing of data from the e-nose and the VE-tongue. By using the both systems, the analyses of headspace and liquid samples from the seven sites allow better discrimination. To explain the cause of the obtained discrimination, TD-GC-MS and SPME-GC-MS analyses are well performed to identify compounds related sites. According to these outcomes, the proposed e-nose and VE-tongue are proved to be rapid and valuable tools for analysis of environmental polluted matrices. KW - Wastewater KW - Electronic nose KW - Voltammetric electronic tongue KW - Thermal desorption-gas chromatography-mass spectrometry KW - Solid phase micro extraction-gas chromatography–mass spectrometry PY - 2021 U6 - https://doi.org/10.1016/j.talanta.2020.121450 VL - 221 SP - 121450 PB - Elsevier B.V. AN - OPUS4-51099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Zemčík, R. ED - Krystek, J. T1 - Influence of rotor downwash on vertically displaced nanobots in flight N2 - One challenge associated with navigating a nano aerial robot swarm indoors in unstructured environments is, i.a., the limited air space. To avoid an over-regulation of the available indoor air space (e.g., prohibit copters to fly above each other), a safety region around each copter must be defined. In this paper, we investigate the impact of the downwash of a nano-drone on the stability of another nearby nano-drone. In the experiments, we found out that this downwash has a negative influence of a second nano-drone in a distance of around 1 m vertically and 0.2 m horizontally. Based on the obtained data, we developed a model describing the above-mentioned safety region to enable a safe operation of the swarm in these environments with fewer constraints. T2 - 36th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Mobile Robot Olfaction KW - Nano aerial robot KW - Swarm KW - Collision-free navigation KW - Safety region model PY - 2020 U6 - https://doi.org/10.1016/j.matpr.2020.03.047 VL - 32 IS - 2 SP - 108 EP - 111 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Scheuschner, Nils A1 - Bartholmai, Matthias A1 - Lilienthal, A.J. T1 - Experimental Validation of the Cone-Shaped Remote Gas Sensor Model N2 - Remote gas sensors mounted on mobile robots enable the mapping of gas distributions in large or hardly accessible areas. A challenging task, however, is the generation of threedimensional distribution maps from these gas measurements. Suitable reconstruction algorithms can be adapted, for instance, from the field of computed tomography (CT), but both their performance and strategies for selecting optimal measuring poses must be evaluated. For this purpose simulations are used, since, in contrast to field tests, they allow repeatable conditions. Although several simulation tools exist, they lack realistic models of remote gas sensors. Recently, we introduced a model for a Tunable Diode Laser Absorption Spectroscopy (TDLAS) gas sensor taking into account the conical shape of its laser beam. However, the novel model has not yet been validated with experiments. In this paper, we compare our model with a real sensor device and show that the assumptions made hold. T2 - IEEE Sensors 2019 CY - Montreal, Canada DA - 27.10.2019 KW - Remote gas sensor model KW - TDLAS KW - Gas dispersion simulation PY - 2019 SN - 978-1-7281-1634-1 SP - 104 EP - 107 PB - IEEE AN - OPUS4-49548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Johann, Sergej A1 - Bartholmai, Matthias T1 - Smart RFID Sensors Embedded in Building Structures for Early Damage Detection and Long-Term Monitoring N2 - In civil engineering, many structures are made of reinforced concrete. Most Degradation processes relevant to this material, e.g., corrosion, are related to an increased level of material moisture. Therefore, moisture monitoring in reinforced concrete is regarded as a crucial method for structural health monitoring. In this study, passive radio frequency identification (RFID)-based sensors are embedded into the concrete. They are well suited for long-term operation over decades and are well protected against harsh environmental conditions. The energy supply and the data transfer of the humidity sensors are provided by RFID. The sensor casing materials are optimised to withstand the high alkaline environment in concrete, having pH values of more than 12. Membrane materials are also investigated to identify materials capable of enabling water vapour transport from the porous cement matrix to the embedded humidity sensor. By measuring the corresponding relative humidity with embedded passive RFID-based sensors, the cement hydration is monitored for 170 days. Moreover, long-term moisture monitoring is performed for more than 1000 days. The Experiments show that embedded passive RFID-based sensors are highly suitable for long-term structural health monitoring in civil engineering. KW - RFID based sensors KW - Embedded sensors KW - Corresponding relative humidity KW - Porous building materials KW - Reinforced concrete KW - Corrosion KW - Civil engineering PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-500831 VL - 19 IS - 24 SP - 1 EP - 18 PB - MDPI CY - Basel, Swiss AN - OPUS4-50083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartelmeß, Jürgen A1 - Zimmek, David A1 - Bartholmai, Matthias A1 - Strangfeld, Christoph A1 - Schäferling, M. T1 - Fibre optic ratiometric fluorescence pH sensor for monitoring corrosion in concrete N2 - In this communication a novel concept for pH sensing is introduced which is specifically adapted to monitor carbonation induced corrosion in concrete structures. The method is based on a ratiometric measurement principle, exploiting the pH sensitive colour switching of thymol blue in the basic pH regime and the emissive properties of two different (Zn)CdSe/ZnS core shell quantum dots. The transition point of thymol blue in a Hydrogel D4 matrix was determined to be at around pH 11.6, which fits ideally to the intended application. Next to the fundamental spectroscopic characterization of the ratiometric response, a new design for a sensor head, suitable for the incorporation into concrete matrices is presented. Toward this, a manufacturing process was developed which includes the preparation of a double layer of polymers containing either thymol blue or a quantum dot mixture inside a porous ceramic tube. Results of a proof-of-priciple performance test of the sensor head in solutions of different pH and in cement specimens are presented, with encouraging results paving the way for future field tests in concrete. KW - Fiber optic sensing KW - PH monitoring in concrete KW - Embedded sensors KW - Ratiometric fluorescence PY - 2020 U6 - https://doi.org/10.1039/c9an02348h VL - 145 IS - 6 SP - 2111 EP - 2117 PB - Royal Society of Chemistry AN - OPUS4-50381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Dzierliński, M. A1 - Lilienthal, A. J. A1 - Bartholmai, Matthias T1 - Aerial-based gas tomography – from single beams to complex gas distributions N2 - In this paper, we present and validate the concept of an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) gas sensor with a 3-axis aerial stabilization gimbal for aiming at a versatile octocopter. While the TDLAS sensor provides integral gas concentration measurements, it does not measure the distance traveled by the laser diode’s beam nor the distribution of gas along the optical path. Thus, we complement the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from a set of integral concentration measurements. To allow for a fundamental ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present results showing its performance characteristics and 2D plume reconstruction capabilities under realistic conditions. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). KW - Aerial robot olfaction KW - Mobile robot olfaction KW - Gas tomography KW - TDLAS KW - Plume PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-487843 SP - 1 EP - 16 PB - Taylor & Francis CY - London AN - OPUS4-48784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Gawlitza, Kornelia A1 - Bell, Jérémy A1 - Mansurova, Maria A1 - Tiebe, Carlo A1 - Bartholmai, Matthias T1 - Semi-automatic Gas Measurement Device Based on Fluorescent Multi-gas Sensors N2 - This paper describes the development of a semi-automatic gas measurement device presenting potentially a broad range of applications, noteworthy in the agricultural sector. Non-reversible fluorescent molecular sensors were designed and syn-thesized. Upon, integration into a hydrogel matrix with an optimal ratio of co-solvents, the sensors reacting selectively to ammonia were illuminated by excitation light to produce a concentration-correlated fluorescence emission. An automated mechanical-elec-trical device initiates a given gas mixture and thus simulates con-centrations similar to a threshold value. The aim of this project is to develop a sensor or a low-cost method which can monitor low concentrations of harmful gases and aid in their elimination or regulation in livestock housing, barns or stables. T2 - IEEE Sensors 2019 CY - Montreal, Canada DA - 27.10.2019 KW - gas analysis KW - fluorescence KW - embedded sensor KW - spectroscopy KW - environment KW - agricultural economy PY - 2019 SN - 978-1-7281-1634-1 SP - 88 EP - 92 PB - IEEE AN - OPUS4-49506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ullner, Christian A1 - Subaric-Leitis, Andreas A1 - Bartholmai, Matthias T1 - Uncertainty of Elastoplastic Material Parameters Calculated from the Spherical Indentation in the Macro Range N2 - The applicability of three methods developed by finite element analysis (FEM) and proposed in the literature are studied on steel S355. Instrumented indentation tests using spherical indenters of radius 200 and 500 μ m are performed in the macro range at depths of more than 6 μ m. The results of the selected methods are compared with the tensile test. To evaluate the partially strongly varying results, the uncertainties of the calculated strain hardening exponent, n, and yield stress, Y, are estimated. Recommendations for an appropriated procedure of the indentation test are given. The machine compliance and the determination of the zero point of Depth play an essential role. If the certain conditions are considered, the instrumented indentation Tests can be used, in particular for investigations of specimens with inhomogeneous elastoplasticity. KW - Indentation KW - Elastoplastic material parameters KW - Uncertainty PY - 2021 U6 - https://doi.org/10.1520/JTE20200683 SN - 0090-3973 VL - 49 IS - 6 SP - 4576 EP - 4592 PB - ASTM International AN - OPUS4-52416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Mansurova, Maria A1 - Kohlhoff, Harald A1 - Gkertsos, Aris A1 - Neumann, Patrick P. A1 - Bell, Jérémy A1 - Bartholmai, Matthias T1 - Wireless Mobile Sensor Device for in-situ Measurements with Multiple Fluorescent Sensors N2 - This paper describes a wireless mobile prototype able to perform optical measurements by means of a miniatur-ized spectrometer for low light analysis, e.g. fluorescent sensors. Evaluations, calculations, calibration management and result display are performed by a computer or a standard tablet. The device was designed primarily to detect traces of oil in drinking or ground water and for the analyses of crude oils. However, it can also address a wide range of fluorescent sensors. The fast and user-friendly inspection of water quality or oil properties, as well as the adaptability and mobility, make the device attractive for a variety of users. Further application areas could be easily imple-mented by adapting the optics and the software (database, data processing and calibration plots, etc.) T2 - IEEE Sensors 2018 CY - New Delhi, India DA - 28.10.2018 KW - Wireless mobile sensor device KW - Fluorescent sensor KW - Embedded system KW - Water quality KW - Oil PY - 2018 SN - 978-1-5386-4707-3 SP - 1067 EP - 1070 PB - IEEE CY - New Delhi, India AN - OPUS4-46556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansurova, Maria A1 - Gotor, Raúl A1 - Johann, Sergej A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Rurack, Knut A1 - Bell, Jérémy T1 - Fluorescent Hydrophobic Test Strips with Sterically Integrated Molecular Rotors for the Detection of Hydrocarbons in Water and Soil with an Embedded Optical Read-Out N2 - Contamination of natural bodies of water or soil with oils and lubricants (or generally, hydrocarbon derivatives such as petrol, fuels, and others) is a commonly found phenomenon around the world due to the extensive production, transfer, and use of fossil fuels. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPHs) in water and soil. The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 2-[ethyl[4-[2-(4-nitrophenyl)ethenyl]phenyl]amino]ethanol (4-DNS-OH). This dye is embedded in a hydrophobic polymeric matrix (polyvinylidene fluoride), avoiding interactions with water and providing a robust support for use in a test strip fashion. Together with the strips, an embedded optical system was designed for fluorescence signal read-out, featuring a Bluetooth low-energy connection to a commercial tablet device for data processing and analysis. This system works for the detection and quantification of TPHs in water and soil through a simple extraction protocol using a cycloalkane solvent with a limit of detection of 6 ppm. Assays in surface and sea waters were conclusive, proving the feasibility of the method for in-the-field operation. KW - Test strip KW - Sensor KW - Smartphone KW - Fluorescence KW - Test Streifen KW - Sensoren KW - Fluoreszenz KW - Petrol KW - Öl PY - 2023 U6 - https://doi.org/10.1021/acs.energyfuels.3c01175 SN - 0887-0624 SP - 1 EP - 6 PB - American Chemical Society CY - Washington, United States AN - OPUS4-57892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansurova, Maria A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Rurack, Knut A1 - Bartholmai, Matthias A1 - Bell, Jérémy T1 - On-Site Analytical Tool Based on Crude Oil Fluorescence and Chemometrics for the Rapid Determination of the Nature and Essential Properties of Oil Spills N2 - With the reduction of large oil spills because of stricter regulations and safety measures, the question of how to manage smaller oil spills arises. Few on-site analytical tools are available for first responders or other law enforcement personnel to rapidly test for crude oil in the early management of localized polluted areas. The approach reported here relies on well-described computer-assisted multivariate data analysis of the intrinsic fluorescence fingerprints of crude oils to build a multivariate model for the rapid classification of crude oils and the prediction of their properties. Thanks to a dedicated robust portable reader, the method allowed classification and accurate prediction of various properties of crude oil samples like density (according to API, the American Petroleum Institute and viscosity as well as composition parameters such as volume fractions of paraffins or aromatics. In this way, autonomous operation in on-site or in-the-field applications becomes possible based on the direct (undiluted and untreated) measurement of samples and a rapid, tablet-operated readout system to yield a robust and simple analytical test with superior performance. Testing in real-life scenarios allowed the successful classification and prediction of a number of oil spill samples as well as weathered samples that closely resemble samples collected by first responders. KW - Oil spills KW - Fluorescence KW - PCA KW - Petroleum KW - Rapid test KW - Portable PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-595442 VL - 4 IS - 2 SP - 621 EP - 627 PB - American Chemical Society (ACS) AN - OPUS4-59544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -