TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Wu, Cheng-Chieh A1 - Strangfeld, Christoph T1 - KonSens - RFID embedded² systems in concrete – validation experiments N2 - Structural Health Monitoring (SHM) is an important part of buildings surveillance and maintenance to detect material failure as early as possible and to contribute in protection of structures and their users. The implementation of Radio Frequency Identification (RFID) sensor systems without cable connection and battery into building components offers innovative possibilities to enable long-term in-situ SHM of addressed structures, bridges. The objectives of the presented study are complete embedding of RFID sensors systems in concrete, full passive communication with the systems, at best for the whole life span of structures. One challenge for this task is the highly alkaline environment in concrete, which requires non-degrading and robust encapsulation. Further Requirements are passive communication and energy supply, appropriate antenna design, placement and fixation in concrete, and the selection and implementation of sensors and connections. The concept is to develop and optimize a simple and robust system, which meets the requirements, as well as comprehensive validation in concrete specimen and real world applications. Two different systems were developed (HF and UHF RFID, respectively). First tasks were the implementation of analog sensors using the superposition principle for the signal adaption. Investigation of suitable materials for robust encapsulation and sensor protection against basic environments. Four materials were investigated in pH 13 solution for 14 days - 3D-Printer-Polymer was completely resolved - PVC has no noticeable decrease in weight - (VitaPro) glass filter for the sensor protector, has weight loss 2.7 % - The epoxy resin has increased by 1.8 % due to moisture expansion Different concrete samples were prepared for the validation of the systems. RFID sensors were embedded in different integration depths. Investigate the energy- and data transfer through concrete, also with varying moisture content. Additionally, signal strength data was used to optimize and validate the antenna characteristics in concrete. Next steps are to guarantee a sufficient energy supply for UHF RFID systems embedded in different concrete mixtures and further embedding the HF and UHF RFID systems in real bridges and buildings to validate the long term monitoring. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Passive RFID KW - RFID sensors KW - Sensors in concrete KW - Smart structures KW - Structural health monitoring PY - 2019 AN - OPUS4-48790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Grotelüschen, Bjarne A1 - Strangfeld, Christoph T1 - Towards Autonomous NDT Inspection: Setup and Validation of an Indoor Localization System N2 - Monitoring and maintenance of civil infrastructure are of great importance, as any undetected damage can cause high repair costs, unintended deadtime, or endanger structural integrity. The inspection of large concrete structures such as bridges and parking lots is particularly challenging and time-consuming. Traditional methods are mostly manual and involve mapping a grid of measurement lines to record the position of each measurement. Current semi-automated methods, on the other hand, use GPS or tachymeters for localization but still require trained personnel to operate. An entirely automated approach using mobile robots would be more cost- and time-efficient. While there have been developments in using GPS-enabled mobile robots for bridge inspection, the weak signal strength in indoor areas poses a challenge for the automated inspection of structures such as parking lots. This paper aims to develop a solution for the automated inspection of large indoor concrete structures by addressing the problem of robot localization in indoor spaces and the automated measurement of concrete cover and rebar detection. T2 - 39th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Siófok, Hungary DA - 26.09.2023 KW - NDT Inspection KW - Mobile Robot KW - Indoor Localization KW - Setup and Validation PY - 2023 AN - OPUS4-58662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -