TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Kammermeier, Michael A1 - Müller, Maximilian A1 - Strangfeld, Christoph T1 - Transmission characteristics of RFID sensor systems embedded in concrete N2 - Completely embedded sensor systems for long-term operation offer innovative possibilities for structural health monitoring of concrete structures. Measuring of relevant parameters, e.g., temperature, humidity, or indication of corrosion can be performed with low energy sensors. This allows to implement passive RFID sensor systems without cable connection and battery, which are power supplied exclusively by the electromagnetic field from the external reader device. To evaluate characteristics and conditions of this concept, a systematical investigation of the transmission characteristics with variation of relevant parameters, as communication frequency, installation depth, type of concrete, moisture content, etc. is currently carried out in an interdisciplinary Research project at BAM. First results are presented in this paper. T2 - IEEE Sensors 2016 CY - Orlando, FL, USA DA - 30.10.2016 KW - Embedded sensors KW - Energy harvesting KW - Wireless sensors KW - RFID sensors KW - Transmission characteristics KW - Structural health monitoring PY - 2016 AN - OPUS4-38387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter T1 - Temperature characteristics of a piezoresistive accelerometer for high impact shock application N2 - This study presents the characterization of a piezoresistive accelerometer damped with silicon oil for the application in drop tests carried out at BAM. Experiments were performed with the Hopkinson Bar method in close correlation to the real-world application conditions. The results point out certain limitations regarding the temperature influence and the frequency response. Additional experiments were performed with a gas damped type of piezoresistive accelerometer, which has superior specifications, particularly for low temperatures. The results allow for a comparison. T2 - Sensoren und Messsysteme CY - Nürnberg, Germany DA - 26.06.2018 KW - Piezoresistive accelerometer KW - Hopkinson bar KW - High impact shock application KW - Temperature characteristics KW - Drop test PY - 2018 AN - OPUS4-45322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Scheuschner, Nils A1 - Lilienthal, A.J. T1 - Experimental Validation of the Cone-Shaped Remote Gas Sensor Model N2 - Remote gas sensors mounted on mobile robots enable the mapping of gas distributions in large or hardly accessible areas. A challenging task, however, is the generation of threedimensional distribution maps from these gas measurements. Suitable reconstruction algorithms can be adapted, for instance, from the field of computed tomography (CT), but both their performance and strategies for selecting optimal measuring poses must be evaluated. For this purpose simulations are used, since, in contrast to field tests, they allow repeatable conditions. Although several simulation tools exist, they lack realistic models of remote gas sensors. Recently, we introduced a model for a Tunable Diode Laser Absorption Spectroscopy (TDLAS) gas sensor taking into account the conical shape of its laser beam. However, the novel model has not yet been validated with experiments. In this paper, we compare our model with a real sensor device and show that the assumptions made hold. T2 - IEEE Sensors 2019 CY - Montreal, Canada DA - 27.10.2019 KW - Remote gas sensor model KW - TDLAS KW - Gas dispersion simulation PY - 2019 AN - OPUS4-49549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter T1 - Comparison of the Temperature Behavior of Oil and Gas Damped Piezoresistive Accelerometers N2 - This study presents the characterization of a piezoresistive accelerometer damped with silicon oil for the application in drop tests carried out at BAM. Experiments were performed with the Hopkinson Bar method in close correlation to the real-world application conditions. The results point out certain limitations regarding the temperature influence and the frequency response. Additional experiments were performed with a gas damped type of piezoresistive accelerometer, which has superior specifications, particularly for low temperatures. The results allow for a comparison. T2 - IEEE SENSORS 2018 CY - Neu Delhi, Indien DA - 28.10.2018 KW - Accelerometer KW - Temperature behavior KW - Frequency response KW - Hopkinson Bar KW - Drop test PY - 2018 AN - OPUS4-46484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Schartel, Bernhard T1 - Comprehensive Fire Behaviour Assessment of Nanocomposites T2 - 9th European Meeting on Fire Retardancy and Protection of Materials, FRPM '03 T2 - 9th European Meeting on Fire Retardancy and Protection of Materials, FRPM '03 CY - Lille, France DA - 2003-09-17 PY - 2003 AN - OPUS4-4615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartelmeß, Jürgen A1 - Gawlitza, Kornelia A1 - Bartholmai, Matthias A1 - Rurack, Knut A1 - Kohlhoff, Harald A1 - Kraus, Werner A1 - Mansurova, Maria A1 - Bell, Jérémy T1 - Developments towards the fluorescence based sensing of hazardous gases N2 - Fluorescence based sensing is a versatile approach for the trace analysis outside of the laboratory, requiring suitable sensor materials and their integration into sensing devices. The versatility of fluorophores as probes, especially in terms of the possibility to tailor their optical as well as their recognition properties by synthetic modifications in a wide range, renders them a superior active component for the preparation of optical sensor devices. Recent works at BAM in this field include, for example, the detection of nerve gas agents, illustrating impressively the aforementioned benefits of fluorophores in optical sensing applications. In the interdisciplinary approach presented here, we target hazardous gases such as ammonia, benzene, and hydrogen sulfide, next to others, which pose a major threat to human health and environmental safety and for which the availability of a sensitive and reliable detection method is highly desirable. The dyes presented follow a “turn-on” fluorescence schematic which allows for the selective and sensitive detection of the respective gaseous analyte. The immobilization of the probe in polymeric matrices is then the next step toward the fabrication of a prototype device for molecular sensing. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Gas sensing KW - Fluorescence KW - KonSens PY - 2017 AN - OPUS4-43209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -