TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen T1 - KonSens - Kommunizierende Sensorsysteme für die Bauteil- und Umweltüberwachung N2 - In the KonSens Project, sensor systems are developed, validated, and operated in form of functional models for the application areas Structure Integrated Sensors and Mobile Multi-gas Sensors. Key aspects are the detection and evaluation of corrosion processes in reinforced concrete structures as well as the detection and quantification of very low concentrations of toxic gases in air. The adaption of sensor principles from the lab into real-life application including appropriate communication techniques is a major task. In recent years, Structural Health Monitoring have gained in importance, since growing age of buildings and infrastructure as well as increasing load requirements demand for reliable surveillance methods. In this regard, the project follows two strategies: First, the development and implementation of completely embedded sensor systems consisting of RFID-tag and in situ sensors, and their further application potential (e.g. for precast concrete elements, roadways, wind power plants, and maritime structures). Secondly, the development of a long-term stable, miniaturized, fiber optic sensor for a ratiometric and referenced measurement of the pH-value in concrete based on fluorescence detection as an indicator for carbonation and corrosion. Environmental pollution through emission of toxic gases becomes an increasing problem not only in agriculture (e.g. biogas plants) and industry but also in urban areas. This leads to increasing demand to monitor environmental emissions as well as ambient air and industrial air components in many scenarios and in even lower concentrations than nowadays. The selectivity of luminescence-based sensors is enabled by the combination of the sensing dye and the material, which is used as accumulation medium for concentration of the analyte. This principle allows for developing gas sensors with high selectivity and sensitivity of defined substances. Additional benefits, particularly of fluorescence-based sensors, are their capability for miniaturization and potential multiplex mode. Objective is the development and implementation of sensors based on fluorescence detection for defined toxic gases (ammonia, hydrogen sulfide, ozone, and benzene) with sensitivity in the low ppm or even ppb range. Additionally, the integration of such sensors in mobile sensor devices is addressed. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - RFID sensors KW - Sensors in concrete KW - Gas sensors KW - Mobile sensors KW - Fluorescence sensors PY - 2017 AN - OPUS4-43183 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Tiebe, Carlo T1 - KonSens (Kommunizierende Sensorsysteme für die Bauteil- und Umweltüberwachung) - Projektergebnisse N2 - Im Projekt KonSens werden für die Anwendungsbeispiele bauteilintegrierte Sensorik für Betonkomponenten und mobile Multigassensorik Sensorsysteme in Form von Funktionsmustern entwickelt, validiert und angewendet. Schwerpunkte liegen einerseits in der Detektion und Bewertung von Korrosionsprozessen in Beton und andererseits in der Detektion und Quantifizierung sehr geringer Konzentrationen toxischer Gase in der Luft. Dabei ist die Adaption der sensorischen Methoden aus dem Labor in reale Messumgebungen inklusive geeigneter Kommunikationstechnik ein wichtiger Aspekt. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Umweltmonitoring KW - Bauwerksüberwachung KW - RFID-Sensorsysteme KW - pH-Sensor KW - Fluoreszenzsensoren PY - 2019 AN - OPUS4-47763 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Schukar, Vivien A1 - Köppe, Enrico A1 - Hofmann, Detlef A1 - Westphal, Anja A1 - Sahre, Mario A1 - Gong, Xin A1 - Basedau, Frank A1 - Beck, Uwe T1 - Intelligent automatic validation of structure-integrated fibre optic strain sensors N2 - Identification of physical faulty fibre optic strain sensors embedded in safety-relevant structures or systems and detection of abnormal measurement data to prevent misinterpretation of critical operating parameters and misleading of management and control systems. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Fiber bragg grating KW - Magnetic field KW - Magnetostrictive metal coating KW - Self-diagnostic fiber optical sensor PY - 2016 AN - OPUS4-37642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Kammermeier, Michael T1 - Hopkinson Bar method for temperature dependent testing and calibration of accelerometers T2 - 31st Danubia Adria Symposium on Advances in Experimental Mechanics CY - Kempten, Germany DA - 2014-09-24 PY - 2014 AN - OPUS4-31543 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias A1 - Tiebe, Carlo A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Gas Tomography Up In The Air! N2 - In this paper, we present an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS) combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile octocopter. The TDLAS sensor provides integral gas concentration measurements but no information regarding the distance traveled by the laser diode's beam or the distribution of the gas along the optical path. We complemented the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from these integral concentration measurements. To allow for a rudimentary ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present first results showing the 2D plume reconstruction capabilities of the system under realistic conditions. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Aerial robot KW - Gas tomography KW - Plume KW - TDLAS PY - 2019 AN - OPUS4-47800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Prager, Jens A1 - Köppe, Enrico T1 - Früherkennung von Strukturschäden mittels geführter Lamb-Wellen T2 - Sensor + Test 2012 CY - Nuremberg, Germany DA - 2012-05-22 PY - 2012 AN - OPUS4-26797 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Noske, Reinhard A1 - Rurack, Knut T1 - Fluorescence sensor for the long-term monitoring of gaseous ammonia N2 - Ammonia and its reaction products can cause considerable damage of human health and ecosystems, increasing the necessity for reliable and reversible sensors to monitor traces of gaseous ammonia in ambient air directly on-site or in the field. Although various types of gas sensors are available, fluorescence sensors have gained importance due to advantages such as high sensitivity and facile miniaturization. Here, we present the development of a sensor material for the detection of gaseous ammonia in the lower ppm to ppb range by incorporation of a fluorescent dye, which shows reversible fluorescence modulations as a function of analyte concentration, into a polymer matrix to ensure the accumulation of ammonia. A gas standard generator producing standard gas mixtures, which comply with the metrological traceability in the desired environmentally relevant measurement range, was used to calibrate the optical sensor system. To integrate the sensor material into a mobile device, a prototype of a hand-held instrument was developed, enabling straightforward data acquisition over a long period. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Ammonia gas sensor KW - Fluorescence KW - Air quality monitoring KW - Standard gas generator KW - Miniaturized sensor device PY - 2017 AN - OPUS4-43143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Scheuschner, Nils A1 - Lilienthal, A.J. T1 - Experimental Validation of the Cone-Shaped Remote Gas Sensor Model N2 - Remote gas sensors mounted on mobile robots enable the mapping of gas distributions in large or hardly accessible areas. A challenging task, however, is the generation of threedimensional distribution maps from these gas measurements. Suitable reconstruction algorithms can be adapted, for instance, from the field of computed tomography (CT), but both their performance and strategies for selecting optimal measuring poses must be evaluated. For this purpose simulations are used, since, in contrast to field tests, they allow repeatable conditions. Although several simulation tools exist, they lack realistic models of remote gas sensors. Recently, we introduced a model for a Tunable Diode Laser Absorption Spectroscopy (TDLAS) gas sensor taking into account the conical shape of its laser beam. However, the novel model has not yet been validated with experiments. In this paper, we compare our model with a real sensor device and show that the assumptions made hold. T2 - IEEE Sensors 2019 CY - Montreal, Canada DA - 27.10.2019 KW - Remote gas sensor model KW - TDLAS KW - Gas dispersion simulation PY - 2019 AN - OPUS4-49549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Prager, Jens A1 - Köppe, Enrico T1 - Early damage detection of structural defects using guided waves T2 - 6th European Workshop on Structural Health Monitoring - Structural Health Monitoring 2012 CY - Dresden, Germany DA - 2012-07-03 PY - 2012 AN - OPUS4-26800 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartelmeß, Jürgen A1 - Gawlitza, Kornelia A1 - Bartholmai, Matthias A1 - Rurack, Knut A1 - Kohlhoff, Harald A1 - Kraus, Werner A1 - Mansurova, Maria A1 - Bell, Jérémy T1 - Developments towards the fluorescence based sensing of hazardous gases N2 - Fluorescence based sensing is a versatile approach for the trace analysis outside of the laboratory, requiring suitable sensor materials and their integration into sensing devices. The versatility of fluorophores as probes, especially in terms of the possibility to tailor their optical as well as their recognition properties by synthetic modifications in a wide range, renders them a superior active component for the preparation of optical sensor devices. Recent works at BAM in this field include, for example, the detection of nerve gas agents, illustrating impressively the aforementioned benefits of fluorophores in optical sensing applications. In the interdisciplinary approach presented here, we target hazardous gases such as ammonia, benzene, and hydrogen sulfide, next to others, which pose a major threat to human health and environmental safety and for which the availability of a sensitive and reliable detection method is highly desirable. The dyes presented follow a “turn-on” fluorescence schematic which allows for the selective and sensitive detection of the respective gaseous analyte. The immobilization of the probe in polymeric matrices is then the next step toward the fabrication of a prototype device for molecular sensing. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Gas sensing KW - Fluorescence KW - KonSens PY - 2017 AN - OPUS4-43209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -