TY - CONF A1 - Ziegler, Mathias A1 - Ahmadi, Samim A1 - Thiel, Erik A1 - Krankenhagen, Rainer A1 - Maierhofer, Christiane T1 - Benefits & peculiarities of using highpower lasers for lock-in thermography N2 - Optical lock-in thermography is a completely contactless and very sensitive NDE technique. As an optical source of energy, incandescent (i.e. halogen) lamps are most commonly used because they are relatively inexpensive, do not need any work safety measures and offer high irradiances at the test site. However, they are strongly restricted by their low modulation bandwidth with a maximum modulation frequency of only about 1 Hz. The use of high-power kilowatt-class laser sources, e.g. diode laser arrays, pushes this constraint beyond 100 Hz. This allows for the exploration of the near-surface region of metals and layer systems with better and more accurate penetration depth and depth resolution. Moreover, these lasers are virtually free of any additional thermal radiation that could interfere with the “true” thermal response emitted from the heated sample. In turn, they can be easily used in a one-sided test configuration. Altogether using lasers considerably increases the application range of lock-in thermography, since especially for metals with a high reflectance and high thermal diffusivity a high irradiance is vitally important to allow for lock-in testing [1, 2]. We report on the mentioned benefits of using such high-power lasers and analyze the range of materials to be tested using lock-in thermography in dependence on the laser irradiance, the modulation frequency, the infrared camera as well as the optical and thermal material parameters. In this context, we also address a number of systematic errors caused by the use of ideal and non-ideal heat sources. For example, the measured phase angle in lock-in thermography depends on the irradiance and the modulation bandwidth of the source. This in turn has a decisive influence on the uncertainty in the quantification of, e.g. layer thicknesses. T2 - INTERNATIONAL SCHOOL OF QUANTUM ELECTRONICS, 62nd Course, Progress in Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 06.09.2018 KW - Thermography KW - Laser thermography KW - Lock-in thermography KW - NDT PY - 2018 AN - OPUS4-46282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. T1 - Thermographic super resolution reconstruction using 2D pseudo-random pattern illumination N2 - Thermographic non-destructive testing is based on the interaction of thermal waves with inhomogeneities. The propagation of thermal waves from the heat source to the inhomogeneity and to the detection surface according to the thermal diffusion equation leads to the fact that two closely spaced defects can be incorrectly detected as one defect in the measured thermogram. In order to break this spatial resolution limit (super resolution), the combination of spatially structured heating and numerical methods of compressed sensing can be used. The improvement of the spatial resolution for defect detection then depends in the classical sense directly on the number of measurements. Current practical implementations of this super resolution detection still suffer from long measurement times, since not only the achievable resolution depends on performing multiple measurements, but due to the use of single spot laser sources or laser arrays with low pixel count, also the scanning process itself is quite slow. With the application of most recent high-power digital micromirror device (DMD) based laser projector technology this issue can now be overcome. T2 - ICPPP21: International Conference on Photoacoustic and Photothermal Phenomena CY - Bled, Slovenia DA - 19.06.2022 KW - Thermography KW - Super resolution KW - NDT KW - Inspection KW - Internal defects KW - DMD KW - DLP PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551224 UR - https://indico.ung.si/event/5/contributions/237/ AN - OPUS4-55122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -