TY - CONF A1 - Dudziak, Mateusz A1 - Bhatia, Riya A1 - Dey, Rohit A1 - Ullrich, Matthias S. A1 - Schartel, Bernhard T1 - Phosphor-enriched wastewater products as sustainable flame retardant in PLA N2 - Revolutionizing our polymer industry for adaption to a sustainable carbon circular economy has become one of today’s most demanding challenges. Exploiting renewable resources to replace fossil-fuel—based plastics with biopolymers such as poly(lactic acid) (PLA) is inevitable while using waste streams as a raw material resource at least is promising. When it comes to using PLA as technical polymer, its high flammability must be addressed by flame retardants compatible with the thermoplastic processing of PLA and its compostability. This study proposes microalgae enriched with phosphorus from wastewater (P-Algae) as an elegant way towards a kind of sustainable organophosphorus flame retardant. The concept is demonstrated by investigating the processing, pyrolysis, flammability, and fire behavior of PLA/P-Algae, while varying the P-Algae content and comparing P-Algae with four alternative bio-fillers (phosphorylated lignin, biochar, thermally treated sewage sludge, and metal phytate) with different P-contents as meaningful benchmarks. T2 - EcoFRam2024 CY - Valencia, Spain DA - 22.05.2024 KW - PLA KW - Flame retardancy KW - Phosphorylated algae KW - Wastewater flame retardants KW - Zink phytate KW - Phosphorylated lignin KW - Thermally treated sludge PY - 2024 AN - OPUS4-60142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz A1 - Schartel, Bernhard T1 - Phosphor-enriched wastewater products as sustainable flame retardant in PLA N2 - Revolutionizing our polymer industry for adaption to a sustainable carbon circular economy has become one of today’s most demanding challenges. Exploiting renewable resources to replace fossil-fuel—based plastics with biopolymers such as poly(lactic acid) (PLA) is inevitable while using waste streams as a raw material resource at least is promising. When it comes to using PLA as technical polymer, its high flammability must be addressed by flame retardants compatible with the thermoplastic processing of PLA and its compostability. This study proposes microalgae enriched with phosphorus from wastewater (P-Algae) as an elegant way towards a kind of sustainable organophosphorus flame retardant. The concept is demonstrated by investigating the processing, pyrolysis, flammability, and fire behavior of PLA/P-Algae, while varying the P-Algae content and comparing P-Algae with four alternative bio-fillers (phosphorylated lignin, biochar, thermally treated sewage sludge, and metal phytate) with different P-contents as meaningful benchmarks. T2 - Polymers for Sustainable Future CY - Prague, Czech Republic DA - 24.06.2024 KW - PLA KW - Flame Retardancy KW - Thermally Treated Sludge KW - Phosphorylated Algae KW - Zink Phytate KW - Wastewater Flame Retardants KW - Phosphorylated Lignin PY - 2024 AN - OPUS4-60619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, Jan A1 - Dudziak, Mateusz A1 - Falkenhagen, Jana A1 - Rockel, Daniel A1 - Reimann, H.-A A1 - Schartel, Bernhard T1 - This is the way: An evidence based route to phytic-acid–based flame retardant poly(lactide acid) N2 - A systematic sequence of materials was investigated to develop phytic-acid (Phyt)–based flame retarded poly (lactide acid) (PLA), while factoring in molecular weight (MW), crystallinity and mechanical properties. Synergistic approaches were developed based on combinations with lignin and expandable graphite (EG), as well as by applying different Phyt salts of melamine (Mel), piperazine (Pip), and arginine (Arg). Compounds were twin screw extruded, injection molded, hot pressed and investigated with thermal analysis, size exclusion chromatography, infrared spectroscopy, tensile testing, limited oxygen index (LOI), UL 94, cone calorimeter, and scanning electron microscope. 16.7 wt.% flame retardant (FR) slightly enhances crystallization while MW remains unchanged in PLA Phyt Arg and PLA Phyt Mel. LOI was improved to 43.7 vol.% for PLA Phyt Arg, UL 94 V0 achieved for PLA Phyt Pip. Cone calorimeter results show total heat evolved reduced by 14 %, maximum average rate of heat emission 43 % lower, and peak heat release rate reduced by 50 % for PLA Phyt Mel. Phyt Mel combined with EG increased the char yield of PLA to 20 wt.% and 15.5 wt.% at 600 and 900 ◦C, respectively. Phyt is exploited to enhance char yield, stabilize the intumescent char, and lower the apparent effective heat of combustion. The combination of Phyt Mel and EG was proposed as an efficient FR for PLA via an evidence based developing route. KW - Polylactide acid KW - Intumescent flame retardant KW - Phosphorous flame retardant KW - Phytic acid KW - Expandable graphite KW - Melamine PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626395 DO - https://doi.org/10.1016/j.polymdegradstab.2025.111242 SN - 1873-2321 SN - 0141-3910 VL - 234 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-62639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dey, R. A1 - Dudziak, Mateusz A1 - Prescher, A. A1 - Kreitsmann, T. A1 - Zhang, K. A1 - Posten, C. A1 - Thomson, C. A1 - Schartel, Bernhard A1 - Ullrich, M. S. A1 - Thomson, L. T1 - Sustainable Flame-Retardant Poly Lactic AcidBiocomposites Reinforced with Polyphosphate-EnrichedMicroalgae: Unlocking the Potential of Hyper-Compensation N2 - This study examines the dual benefits of microalgae cultivation for wastewatertreatment and the enhancement of polylactic acid-based biocomposites. UsingDesmodesmus sp. in a photobioreactor, both batch and continuous operationsachieve total nitrogen (TN) and total phosphorus (TP) removal rates of up to99.9%, maintaining TN and TP levels below 0.02 mg L−1 in the effluent, aligningwith European discharge standards. Continuous cultivation increases biomassproductivity from 0.102 to 0.43 g L−1 day−1 , a 322% improvement over batchoperations. Nutrient starvation followed by reintroduction to nutrient-richwastewater induces hyper-compensation luxury uptake, with P-enrichedcells accumulating 1.33% intracellular P within six hours — 21% higherthan natural accumulation. The results reveal that luxury phosphorus uptakein microalgae follows a triphasic system of uptake and storage, challengingthe previously suggested biphasic model. When incorporated into Poly lacticacid (PLA), the biomass enhances versatility, offering potential replacementof inorganic P in industrial applications, particularly flame retardants.Pyrolysis and cone calorimetry confirm the thermal and fire-retardantbenefits, with a 20% reduction in peak heat release rate and increased charyield. This work highlights microalgae’s role in sustainable biocomposites,supporting wastewater treatment, nutrient recovery, and CO2 sequestration. KW - biocomposites KW - biopolymers KW - Flame-retardant KW - Hyper compensation KW - Phycoremediation KW - Wastewater treatment PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-640408 DO - https://doi.org/10.1002/adsu.202500251 SN - 2366-7486 VL - 9 IS - 8 SP - 1 EP - 11 PB - Wiley VHC-Verlag AN - OPUS4-64040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz T1 - Synergistic effect of commercial and natural flame retardants in polylactide biocomposites N2 - Main message: We propose a combination of natural biomass from algae species Desmodesmus sp.along with commercially available flame retardant Melapur200 (melamine polyphosphate) in different mass ratios. We have successfully demonstrated that the use of both of them in PLA matrix biocomposites shows a synergistic flame retardant effect. Introduction: Poly(lactic acid) (PLA), a biodegradable polymer produced from renewable resources such as corn starch and sugarcane, is increasingly being used as a substitute for traditional petrochemical-based polymers in various commercial applications. However, its flammability characteristics need improvement to enable its use as a technical polymer. Based on previous successful experiments on PLA biocomposites with phosphor-enriched algae as filler [1], it was even mandatory to continue with enhancement of PLA flame retardancy. Therefore, tests for PLA biocomposites with P-algae containing melamine polyphosphate at different mass ratios were performed. Pyrolysis, reaction to small fire and fire behavior tests were carried out. Results and Discussion: Thermal stability analyses showed that all composites decompose earlier at lower temperature than pure PLA to a small extent. The evolved gases analysis revealed the release of ammonia and phosphates for the composites tested. PCFC analysis showed the greatest decrease in pHRR for the sample containing Melapur200/Algae (Figure 1A). Similarly, in the fire behaviour analysis, the best result was obtained for the sample containing a mixture of Melapur200 and Algae (Figure 1B). Satisfying results were obtained in the tests of reaction to small flame, where all the samples passed the classification from V-2 to V-0 (in the UL 94 test) and the oxygen index for the best sample was 27.4 +- 0.2%. When only Melapur200 or algae are added separately, a slight flame retardant effect is visible, however if both materials are added in suitable mixtures to the polymer, a synergistic effect is observable. In some cases, it can even be observed that the synergistic effect has surpassed expectations from the superposition. In conclusion, the combination of Melapur200 together with microalgae gives satisfying flame retardant effects for PLA biocomposites. Acknowledgement: The authors thank Dr. Georgios Mourgas (Tecnaro GmbH), and Dr. Michael Schweizer (Tecnaro GmbH) for their contributions to conceptualizing the project, raising the grant, and supporting this work. Thanks to Dr. Robert Gleuwitz (formerly of the BAM), Dr. Claudia Thomsen (iSeaMC GmbH) and Prof. Dr. Laurenz Thomsen (formerly of Jacobs University Bremen, now University of Gothenburg), Thanks to the financial support of the Bundesministerium für Bildung und Forschung – BMBF: KMU-innovativ: Biooekonomie 031B1289B T2 - 20th European Meeting on Fire Retardant Polymeric Materials (FRPM2025) CY - Madrid, Spain DA - 03.06.2025 KW - Polylactide KW - Melamine polyphosphate KW - Microalgae KW - Synergism PY - 2025 AN - OPUS4-63399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Bhatia, Riya A1 - Dey, R. A1 - Falkenhagen, Jana A1 - Ullrich, M. S. A1 - Thomsen, C. A1 - Schartel, Bernhard T1 - Wastewater phosphorus enriched algae as a sustainable flame retardant in polylactide N2 - Revolutionizing our polymer industry for adaption to a sustainable carbon circular economy has become one of today’s most demanding challenges. Exploiting renewable resources to replace fossil-fuel—based plastics with biopolymers such as poly(lactic acid) (PLA) is inevitable while using waste streams as a raw material resource at least is promising. When it comes to using PLA as technical polymer, its high flammability must be addressed by flame retardants compatible with the thermoplastic processing of PLA and its compostability. This study proposes microalgae enriched with phosphorus from wastewater (P-Algae) as an elegant way towards a kind of sustainable organophosphorus flame retardant. The concept is demonstrated by investigating the processing, pyrolysis, flammability, and fire behavior of PLA/P-Algae, while varying the P-Algae content and comparing P-Algae with four alternative bio-fillers (phosphorylated lignin, biochar, thermally treated sewage sludge, and metal phytate) with different P-contents as meaningful benchmarks. KW - PLA KW - Flame Retardancy KW - Phosphorylated Algae KW - Wastewater flame retardants KW - Zink phytate KW - Phosphorylated lignin KW - Thermally treated sludge PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604150 DO - https://doi.org/10.1016/j.polymdegradstab.2024.110885 SN - 1873-2321 SN - 0141-3910 VL - 227 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-60415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Dural, Esra A1 - Dey, R. A1 - Ullrich, M. S. A1 - Huth, Christian A1 - Thomson, C. A1 - Schartel, Bernhard T1 - Together We Can: Synergistic Flame Retardancy by Melamine Polyphosphate and Phosphorylated Microalgae in Polylactide Biocomposites N2 - A strategy for enhancing the sustainable flame retardancy of polylactide (PLA) composites by partially replacing melamine polyphosphate (MPP), a commercial flame retardant proposed for PLA, with wastewater polyphosphate-enriched microalgae (P-Algae) has been explored. The incorporation of P-Algae at a 1:1 ratio with MPP leads to a notable synergistic effect, surpassing the expected additive behavior of the individual components. Comprehensive characterization encompassing thermogravimetric analysis coupled with FTIR, pyrolysis combustion flow calorimeter (PCFC), cone calorimeter, oxygen index (LOI), UL-94 tests, and rheological measurements—demonstrates that the presence of this biomaterial can significantly enhance flame retardant performance. Replacing 50% of MPP with P-Algae in PLA resulted in a 17% reduction in peak heat release rate (pHRR) and maintained a V-0 rating in UL-94 testing. The use of P-Algae does not compromise the flame retardancy of PLA but rather contributes positively, offering a promising path toward more sustainable flame-retardant systems. By leveraging naturally derived biomass, this approach aligns with the growing demand for novel eco-friendly technologies in polymer engineering. Insights into an innovative renewable additive as a functional and effective component in flame-retardant biocomposites have been achieved. KW - Flame retardancy KW - Melamine polyphosphate KW - Phosphorus- enriched microalgae KW - Polylactide PLA KW - Synergism PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-640539 DO - https://doi.org/10.1002/pat.70350 SN - 1099-1581 SN - 1042-7147 VL - 36 IS - 9 SP - e70350 PB - John Wiley & Sons Ltd. AN - OPUS4-64053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Riechers, Birte A1 - Maaß, Robert A1 - Michalchuk, Adam A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Beyond conventional calorimetry: Unlocking thermal characterization with fast scanning techniques N2 - Fast scanning calorimetry (FSC) has emerged as a transformative technique in thermal analysis, enabling the investigation of rapid and kinetically driven thermal transitions that are inaccessible to conventional differential scanning calorimetry. This review highlights the capabilities enabled by FSC for studying a wide range of materials under extreme thermal conditions, including polymers, pharmaceuticals, metallic glasses, nanocomposites, and hydrogels. By employing ultrafast heating and cooling rates, FSC allows for the suppression of crystallization, resolution of weak transitions, and analysis of thermally labile or size-limited samples. The technique is particularly valuable for probing glass transitions, relaxation phenomena, and phase behavior in systems with complex morphologies or confined geometries. Case studies demonstrate the use of FSC in characterizing vitrification, physical aging, and interfacial dynamics, as well as its application in emerging fields such as additive manufacturing, supramolecular systems, and neuromorphic materials. Together, these examples underscore the role that FSC plays in advancing the understanding of structure-property relationships across diverse material classes. KW - Flash DSC KW - Calorimetry KW - Glass transition PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647405 DO - https://doi.org/10.1016/j.tca.2025.180177 VL - 754 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-64740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz T1 - Thermal properties of polymer nanocomposites based on polycarbonate (PC) and boehmite N2 - Nanocomposites are extremely versatile due to their physicochemical properties, which differ significantly from bulk homopolymers. One of the inorganic nanomaterials which are increasingly used as a filler in polymer matrices is boehmite, typically used as an inexpensive flame retardant. Here, it is used as a nanofiller in polycarbonate and polyamide, expecting to improve their mechanical properties. For industrial use boehmite is obtained by the solvothermal method, resulting in a layered nanomaterial, whereas naturally it occurs as single crystals with the size of <100µm. In this work we are obtaining and isolating boehmite crystals by a bottom-up method, in which a reaction between aluminum nitride and sodium hydroxide. Obtaining boehmite as microcrystals is necessary for its analysis and characterization, as well as to investigate its interaction with polymer matrices at the polymer/particle interface. Here, the obtained particles in polymer matrices are characterized with differential scanning calorimetry and thermogravimetry analysis. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 31.03.2019 KW - Boehmite KW - Polycarbonate PY - 2019 AN - OPUS4-47768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Topolniak, Ievgeniia A1 - Silbernagl, Dorothee A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Long-time behavior of surface properties of microstructures fabricated by multiphoton lithography N2 - The multiphoton lithography (MPL) technique represents the future of 3D microprinting, enabling the production of complex microscale objects with high precision. Although the MPL fabrication parameters are widely evaluated and discussed, not much attention has been given to the microscopic properties of 3D objects with respect to their surface properties and time-dependent stability. These properties are of crucial importance when it comes to the safe and durable use of these structures in biomedical applications. In this work, we investigate the surface properties of the MPL-produced SZ2080 polymeric microstructures with regard to the physical aging processes during the post-production stage. The influence of aging on the polymeric microstructures was investigated by means of Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). As a result, a time-dependent change in Young’s Modulus, plastic deformation, and adhesion and their correlation to the development in chemical composition of the surface of MPL-microstructures are evaluated. The results presented here are valuable for the application of MPL-fabricated 3D objects in general, but especially in medical technology as they give detailed information of the physical and chemical time-dependent dynamic behavior of MPL-printed surfaces and thus their suitability and performance in biological systems. KW - Multiphoton lithography KW - Additive manufacturing KW - Microfabrication KW - SZ2080 negative photo-resist KW - Young´s modulus KW - Aging KW - Surface properties KW - X-ray photoelectron spectroscopy KW - Atomic force microscopy KW - Force-distance-curve PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542166 DO - https://doi.org/10.3390/nano11123285 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz T1 - Thermal properties of polymer nanocomposites based on polycarbonate (PC) and boehmite N2 - Nanocomposites are extremely versatile due to their physicochemical properties, which differ significantly from bulk homopolymers. One of the inorganic nanomaterials which are increasingly used as a filler in polymer matrices is boehmite, typically used as an inexpensive flame retardant. Here, it is used as a nanofiller in polycarbonate and polyamide, expecting to improve their mechanical properties. For industrial use boehmite is obtained by the solvothermal method, resulting in a layered nanomaterial, whereas naturally it occurs as single crystals with the size of <100µm. In this work we are obtaining and isolating boehmite crystals by a bottom-up method, in which a reaction between aluminum nitride and sodium hydroxide. Obtaining boehmite as microcrystals is necessary for its analysis and characterization, as well as to investigate its interaction with polymer matrices at the polymer/particle interface. Here, the obtained particles in polymer matrices are characterized with differential scanning calorimetry and thermogravimetry analysis. T2 - 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Boehmite KW - Polycarbonate PY - 2019 AN - OPUS4-47769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -