TY - CONF A1 - Gaal, Mate A1 - Kotschate, Daniel T1 - New technologies for air-coupled ultrasonic transducers N2 - Air-coupled ultrasonic testing (ACUT) has experienced rapid growth within the last years. It is especially well suited to inspection of lightweight structures consisting of composite materials and adhesive joints. Uniform coupling and easy maintenance are its advantages compared to contact technique. However, the impedance mismatch between the transducer and air poses a major challenge to the development of ACUT transducers. Commercially available air-coupled transducers consist of a piezocomposite material and matching layers. Their fabrication is difficult in handling and their signal-to-noise ratio sometimes not sufficient for various testing requirements. However, there are several innovative approaches using other materials and other physical principles to transmit and receive an ultrasonic pulse. We present a review of the latest advances in research on air-coupled transducers for non-destructive testing, including previously unpublished results. We recognize two major directions as most promising: ferroelectrets and thermoacoustic transducers. Ferroelectrets are charged cellular polymers exhibiting piezoelectric properties. Their small acoustic impedance is matched to air better than matching layers applied in conventional air-coupled transducers. Applying bias voltage to a ferroelectret receiver is the latest development in this field, which increased the received signal by 12 to 15 dB. Thermoacoustic transducers use heat to initiate an ultrasonic wave, acting as transmitters. The working principle is known from nature as thunder and lightning: thermal energy of an electrically heated material, which can also be air, is converted into acoustic energy. Some thermoacoustic transmitters consist of a conductive layer with a thickness in the nanometer range deposited on a solid substrate. Another possibility is to use an electric spark. For the first time, measurements of the sound field of an electric spark up to 500 kHz were performed. Thermoacoustic transducers enable excitation of extremely broadband pulses while producing high pressure levels, which opens new possibilities for advanced signal processing. T2 - 12th European conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - Transducer KW - Air-coupled ultrasonic testing KW - Atmospheric pressure plasma KW - Cellular polypropylene KW - Ferroelectret PY - 2018 AN - OPUS4-45304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Kotschate, Daniel T1 - New technologies for air-coupled ultrasonic transducers T2 - 12th European conference on Non-Destructive Testing N2 - Air-coupled ultrasonic testing (ACUT) has experienced rapid growth within the last years. It is especially well suited to inspection of lightweight structures consisting of composite materials and adhesive joints. Uniform coupling and easy maintenance are its advantages compared to contact technique. However, the impedance mismatch between the transducer and air poses a major challenge to the development of ACUT transducers. Commercially available air-coupled transducers consist of a piezocomposite material and matching layers. Their fabrication is difficult in handling and their signal-to-noise ratio sometimes not sufficient for various testing requirements. However, there are several innovative approaches using other materials and other physical principles to transmit and receive an ultrasonic pulse. We present a review of the latest advances in research on air-coupled transducers for non-destructive testing, including previously unpublished results. We recognize two major directions as most promising: ferroelectrets and thermoacoustic transducers. Ferroelectrets are charged cellular polymers exhibiting piezoelectric properties. Their small acoustic impedance is matched to air better than matching layers applied in conventional air-coupled transducers. Applying bias voltage to a ferroelectret receiver is the latest development in this field, which increased the received signal by 12 to 15 dB. Thermoacoustic transducers use heat to initiate an ultrasonic wave, acting as transmitters. The working principle is known from nature as thunder and lightning: thermal energy of an electrically heated material, which can also be air, is converted into acoustic energy. Some thermoacoustic transmitters consist of a conductive layer with a thickness in the nanometer range deposited on a solid substrate. Another possibility is to use an electric spark. For the first time, measurements of the sound field of an electric spark up to 500 kHz were performed. Thermoacoustic transducers enable excitation of extremely broadband pulses while producing high pressure levels, which opens new possibilities for advanced signal processing. T2 - 12th European conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - Air-coupled ultrasonic testing KW - Atmospheric pressure plasma KW - Cellular polypropylene KW - Ferroelectret KW - Transducer PY - 2018 SP - ECNDT-0608-2018, 1 EP - 9 AN - OPUS4-45209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grager, J.-C. A1 - Kotschate, Daniel A1 - Gamper, J. A1 - Gaal, Mate A1 - Pinkert, K. A1 - Mooshofer, H. A1 - Goldammer, M. A1 - Grosse, C. U. T1 - Advances in air-coupled ultrasonic testing combining an optical microphone with novel transmitter concepts T2 - 12th European conference on Non-Destructive Testing N2 - Air-coupled ultrasound (ACU) is increasingly used for automated and contactless inspection of large-scale composite structures as well as for non-destructive testing (NDT) of water-sensitive or porous materials. The major challenge to overcome using ACU in NDT is the enormous loss of ultrasonic energy at each solid-air interface caused by the high acoustic impedance mismatch. Resonant low-frequency piezoceramic transducers are specially designed to achieve high sound pressure levels. For an expanded use of this technique, however, the spatial resolution needs to be increased. Recent studies of our collaborative research group demonstrated the successful application of a resonance-free, highly sensitive receiver that uses a Fabry-Pérot etalon instead of piezoceramic materials or membranes. However, to reach the full potential of this broadband small-aperture optical microphone, novel transmitter concepts have to be developed and evaluated for advanced NDT applications. Different types of transmitter were tested in combination with the optical microphone acting as receiver and they were compared to conventional piezoceramic transducers in through-transmission mode. Monolithic carbon fiber-reinforced plastics (CFRP) and CFRP sandwich structures containing different defect types were inspected. Presented results are processed as C-scan images and further evaluated for spatial resolution, signal-to-noise ratio and sensitivity of each measurement setup. Novel transmitter concepts, such as ferroelectret and thermoacoustic emitters, show promising findings with a considerably improved time and spatial resolution for ACU-NDT. T2 - 12th European conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - Air-coupled ultrasonic testing KW - Optical microphone KW - Thermoacoustic KW - Cellular polypropylene KW - Ferroelectret KW - Transducer PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452114 SP - ECNDT-0166-2018, 1 EP - 10 AN - OPUS4-45211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schadow, Florian A1 - Gaal, Mate A1 - Bartusch, Jürgen A1 - Dohse, E. A1 - Köppe, Enrico T1 - Focusing air-coupled ultrasonic transducers based on ferroelectrets T2 - Proceedings 19th World Conference on Non-Destructive Testing N2 - Rising importance of composite lightweight structures in aircraft and automobile industries increases the demand on reliable non-destructive testing methods for these structures. Air-coupled ultrasonic testing emerged to suit these requirements as it does not require any liquid coupling medium. In conventional air-coupled ultrasonic transducers, matching layers are used in order to decrease the impedance mismatch between transducer and air. Matching layers can be omitted by using ferroelectrets, which are charged cellular polymers having ferroelectric and piezoelectric properties. Especially a low Young’s modulus, low density and low sound velocity of cellular polypropylene (cPP) are properties being required for well-matched air-coupled ultrasonic transducers. In our contribution we show recent enhancements of cPP transducers resulting in focused sound fields and thus improved lateral sensitivity. The influence of different transmitter apertures was evaluated using measurements of the emitted sound field. Further we show a transmission of a test specimen of carbon-fiber-reinforced plastic (CFRP) containing artificial damages. Results of focused transducers were compared to planar ferroelectret transducers, as well as to conventional air-coupled transducers. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - München, Germany DA - 13.06.2016 KW - Air-coupled ultrasonic testing KW - Ferroelectrets KW - Cellular polypropylene KW - Focused sound fields KW - Focused transducers PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-355116 UR - http://www.ndt.net/search/docs.php3?showForm=off&id=19453 SP - 1 EP - 8 AN - OPUS4-35511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Schadow, Florian T1 - Air-coupled ultrasonics: theory N2 - This presentation is an overview of the basics of air-coupled ultrasonic testing. The emphasis is on transducers and wave propagation, illustrated by examples from non-destructive testing. T2 - Non-destructive testing of fiber reinforced polymers. Training course ultrasonics and active thermography CY - Berlin, Germany DA - 28.03.2017 KW - Air-coupled ultrasonic testing KW - Carbon-fiber-reinforced plastic KW - Transducer PY - 2017 AN - OPUS4-39768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Schadow, Florian A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Air-coupled ultrasonic ferroelectret transducers with additional bias voltage for testing of composite structures N2 - Common air-coupled transducers for non-destructive testing consist of a piezocomposite material and several matching layers. Better acoustical matching to air is achieved by transducers based on charged cellular polypropylene (PP). This material has about hundred times lower acoustic impedance than any piezocomposite, having about the same piezoelectric coefficient. The piezoelectric properties of cellular PP are caused by the polarization of air cells. Alternatively, a ferroelectret receiver can be understood as a capacitive microphone with internal polarization creating permanent internal voltage. The sensitivity of the receiver can be increased by applying additional bias voltage. We present an ultrasonic receiver based on cellular PP including a high-voltage module providing bias voltage up to 2 kV. The application of bias voltage increased the signal by 12 to 15 dB with only 1 dB increase of the noise. This receiver was combined with a cellular PP transmitter in through transmission to inspect several test specimens consisting of glass-fiber-reinforced polymer face sheets and a porous closed-cell PVC core. These test specimens were inspected before and after load. Fatigue cracks in the porous PVC core and some fatigue damage in the face sheets were detected. These test specimens were originally developed to emulate a rotor blade segment of a wind power plant. Similar composite materials are used in lightweight aircrafts for the general aviation. The other inspected test specimen was a composite consisted of glass-fiber-reinforced polymer face sheets and a wooden core. The structure of the wooden core could be detected only with cellular PP transducers, while commercial air-coupled transducers lacked the necessary sensitivity. Measured on a 4-mm thick carbon-fiber-reinforced polymer plate, cellular PP transducers with additional bias voltage achieved a 32 dB higher signal-to-noise ratio than commercial air-coupled transducers. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 26.10.2018 KW - Airborne ultrasonic testing KW - Air-coupled ultrasonic testing KW - Ferroelectret KW - Composites KW - Rotor blade PY - 2018 AN - OPUS4-46656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Schadow, Florian A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Air-coupled ultrasonic ferroelectret transducers with additional bias voltage for testing of composite structures T2 - 10th International Symposium on NDT in Aerospace N2 - Common air-coupled transducers for non-destructive testing consist of a piezocomposite material and several matching layers. Better acoustical matching to air is achieved by transducers based on charged cellular polypropylene (PP). This material has about hundred times lower acoustic impedance than any piezocomposite, having about the same piezoelectric coefficient. The piezoelectric properties of cellular PP are caused by the polarization of air cells. Alternatively, a ferroelectret receiver can be understood as a capacitive microphone with internal polarization creating permanent internal voltage. The sensitivity of the receiver can be increased by applying additional bias voltage. We present an ultrasonic receiver based on cellular PP including a high-voltage module providing bias voltage up to 2 kV. The application of bias voltage increased the signal by 12 to 15 dB with only 1 dB increase of the noise. This receiver was combined with a cellular PP transmitter in through transmission to inspect several test specimens consisting of glass-fiber-reinforced polymer face sheets and a porous closed-cell PVC core. These test specimens were inspected before and after load. Fatigue cracks in the porous PVC core and some fatigue damage in the face sheets were detected. These test specimens were originally developed to emulate a rotor blade segment of a wind power plant. Similar composite materials are used in lightweight aircrafts for the general aviation. The other inspected test specimen was a composite consisted of glass-fiber-reinforced polymer face sheets and a wooden core. The structure of the wooden core could be detected only with cellular PP transducers, while commercial air-coupled transducers lacked the necessary sensitivity. Measured on a 4-mm thick carbon-fiber-reinforced polymer plate, cellular PP transducers with additional bias voltage achieved a 32 dB higher signal-to-noise ratio than commercial air-coupled transducers. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 26.10.2018 KW - Airborne ultrasonic testing KW - Air-coupled ultrasonic testing KW - Ferroelectret KW - Composites KW - Transducers PY - 2018 SP - 1 EP - 6 AN - OPUS4-46657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Wendland, Saskia A1 - Gaal, Mate T1 - Airborne testing of molded polymer compounds T2 - 10th International Symposium on NDT in Aerospace (Proceedings) N2 - Modern and energy-efficient materials are essential for innovative designs for aerospace and automotive industries. Current technologies for rapid manufacturing such as additive manufacturing and liquid composite moulding by polymer Extrusion allow innovative ways of creating robust and lightweight constructions. Commercially available printing devices often use polylactide (PLA) or acrylonitrile butadiene styrene (ABS) as raw material. Therefore, parameters like the infill ratio, influencing the ability to resist mechanical stress, may have a beneficial impact on the lifetime of components. These manufacturing technologies require a good knowledge about materials and even adapted non-destructive testing technologies and methods. Airborne ultrasonic testing has beneficial advantages for testing those lightweight constructions. It is a contact-free testing method, which does not require a liquid couplant. Therefore, it allows fast test cycles without any unwanted alternations of the material properties due to interactions with any coupling liquid. This contribution deals with the characterisation of printed specimens based on PLA by using airborne ultrasound and presents the current edge of non-destructive testing and evaluation using airborne ultrasonic transducers. The specimens, manufactured by polymer extrusion, are printed as thin plates. The infill ratio, as well as the material thickness, were varied to model density imperfections with different geometric shapes and properties. For better understanding of the limits of airborne ultrasonic testing in transmission, we compared own-developed transducers based on different physical principles: on ferroelectrets, on the thermoacoustic effect, as well as a new type of transducers based on gas discharges. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 24.10.2018 KW - Air-coupled ultrasonic testing KW - Polymer KW - Plasma acoustics KW - Gas discharges KW - Atmospheric pressure plasma PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465609 VL - 168 SP - Th.6.C.1, 1 EP - 7 AN - OPUS4-46560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -