TY - CONF A1 - John, Sebastian A1 - Auster, Jürgen A1 - Widjaja, Martinus Putra A1 - Duffner, Eric A1 - Mair, Georg W. T1 - NIP II - Forschungsvorhaben „DELFIN“ N2 - Überblick über Projektinhalte und -ergebnisse aus dem Forschungsvorhaben Delfin „Erforschung alternativer Materialien und Fertigungsprozesse für kosten- und gewichtsreduzierte Druckbehälter aus endlosfaserverstärkten Kunststoff“ T2 - SAMPE Kolloquium CY - Online meeting DA - 15.01.2022 KW - Wasserstoff KW - Druckbehälter KW - Impact PY - 2022 AN - OPUS4-58064 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - John, Sebastian A1 - Widjaja, Martinus Putra A1 - Mair, Georg W. T1 - Modalanalyse als Werkzeug zur Lebensdauerabschätzung bei Composite-Druckbehältern N2 - Hochbeanspruchte Bauteile wie Druckbehälter bergen im Falle eines Versagens ein erhebliches Gefährdungspotential für Mensch und Umgebung. Trotz der Auslegung mit hohen Sicherheitsfaktoren kommt es durch die hauptsächlich bei mobilen Anwendungen eingesetzten Leichtbauwerkstoffe und Materialkombinationen zu komplexen Degradations- und Schädigungsvorgängen, welche unter ungünstigen Umständen zu einem frühzeitigen Versagen führen können. Die hier vorgestellten Untersuchungen beziehen sich auf Typ IV-Gasspeicher, die als Wasserstofftanks in KFZ zur Anwendung kommen. Durch den Einsatz eines Messverfahrens auf Basis einer experimentellen Modalanalyse (EMA) sollen Schädigungs- und Degradationsgrad künftig zerstörungsfrei erfasst und auch einsatzbegleitend überwacht werden können. T2 - DAGA 2021 - 47. Jahrestagung für Akustik CY - Wien, Österreich DA - 15.08.2021 KW - Impact KW - Modalanalyse KW - Druckbehälter PY - 2021 VL - 47 SP - 1202 EP - 1205 AN - OPUS4-53626 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg W. A1 - Thionnet, A. T1 - The Application of a Reduced Volume Method for the Simulation of the Characterisation of a Carbon Fibre Pressure Vessel N2 - The developed model has certain limitations of the element size to be used in the simulation to characterise the strength of composite materials. A reduced volume method is proposed in order to reduce the number of degree of freedom of the finite element simulation.This study has revealed certain configuration to be followed to speed up the computation time. T2 - The 18th European Conference on Composite Materials CY - Athens, Greece DA - 24.06.2018 KW - Composite pressure vessel KW - Fibre break KW - Integral range KW - Representative volume element PY - 2018 SP - 1193-892 AN - OPUS4-48927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dayani, Shahabeddin A1 - Markötter, Henning A1 - Schmidt, Anita A1 - Widjaja, Martinus Putra A1 - Bruno, Giovanni T1 - Multi-level X-ray computed tomography (XCT) investigations of commercial lithium-ion batteries from cell to particle level N2 - Adopting X-ray computed tomography (XCT) for ex-situ characterization of battery materials has gained interest in the past decade. The main goal of this paper is to demonstrate the effectiveness of several X-ray computer tomography techniques to study commercial batteries. General guidelines are provided to select the most suitable imaging equipment and parameters for investigations of lithium-ion batteries, spanning the length scales from cell to electrode, down to particle level. Relevantly, such parameters would also be suitable for operando experiments. Safety mechanisms and manufacturing inconsistencies at cell level as well as defects and inhomogeneity in cathode and anode is illustrated and quantified. Furthermore, relation of beam energy and sample-detector-distance on contrast retrieved from attenuation and phase shift is inspected using Synchrotron XCT. KW - Non-destructive testing KW - X-ray computed tomography KW - Synchrotron X-ray computed tomography KW - Lithium-ion battery PY - 2023 DO - https://doi.org/10.1016/j.est.2023.107453 SN - 2352-152X VL - 66 SP - 107453 PB - Elsevier Ltd. AN - OPUS4-57512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Popiela, Bartosz A1 - Günzel, Stephan A1 - Sklorz, Christian A1 - Widjaja, Martinus Putra A1 - Mair, Georg W. A1 - Seidlitz, Holger T1 - Application of the incremental hole-drilling method for residual stress determination in type 4 pressure vessels N2 - Hole-drilling method is a standardized technique for obtaining residual stresses in isotropic structures. Previous studies provide a foundation that enables the use of this method to investigate orthotropic structures, such as fiber-reinforced composites. In this study, the incremental hole-drilling method was applied to investigate residual stresses in filament wound type 4 composite pressure vessels. The investigated composite cylinders were manufactured with different internal pressure functions during the winding process, to achieve distinct residual stress states. Additionally, the influence of the initial loading under sustained internal pressure and increased temperature on the stress distribution was investigated. It was shown that the residual stress state can be influenced by varying the internal pressure in the winding process. After testing at sustained load and increased temperature, a stress redistribution was observed, which took place due to creep phenomena. Finally, a discussion of the challenges for the application of the hole-drilling method to composite pressure vessels is provided. KW - Hole-drilling method KW - Filament winding KW - Type 4 composite pressure vessels KW - Residual stresses KW - Stress redistribution PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627765 DO - https://doi.org/10.1515/mt-2024-0328 SN - 2195-8572 VL - 67 IS - 4 SP - 663 EP - 674 PB - Walter de Gruyter GmbH AN - OPUS4-62776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Isaac, Augusta A1 - Serrano‐Munoz, Itziar A1 - Kostka, Aleksander A1 - Widjaja, Martinus Putra A1 - González‐Doncel, Gaspar A1 - Bruno, Giovanni A1 - Fernández, Ricardo T1 - Subgrain and Cavity Development during Creep of Al‐3.85%Mg N2 - It is classically considered that the creep mechanisms for type M (e.g., pure Al) and type A alloys (e.g., Al–Mg alloys) are different. In previous studies, it is predicated that fractal dislocation structures build up during creep can unify the creep behavior of pure Al and Al–Mg alloys. So far, good agreement between model and experimental data for pure Al is obtained. In this work, an Al‐3.85%Mg material crept at different strain levels (6%, 12%, 24%, and 35%) is analyzed by means of electron channelling contrast imaging. The formation of subgrains is observed at very large deformations (35%). Further examinations at 35% deformation, using electron backscatter diffraction, indicate that the subgrains and cavities tend to localize at regions where high intergranular stress mismatch is expected to occur. Laboratory X‐ray computed tomography is used to analyze the evolution of cavities between 12% and 24% stages, indicating that the fractal dimension of the cavities smaller than 100 μm varies with creep strain, as a reflection of the evolution of dislocation distribution. It is explained how the present data feed the model of the creep behavior of Al‐3.85%Mg. KW - Al–Mg alloys KW - Creep KW - Dislocations KW - Fractal KW - Intergranular residual stress KW - Subgrains PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-645905 DO - https://doi.org/10.1002/adem.202500263 SN - 1438-1656 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-64590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böttcher, Nils A1 - Sander, Luise A1 - Ulbricht, Alexander A1 - Widjaja, Martinus Putra A1 - Fellinger, Tim-Patrick A1 - Schmidt, Anita A1 - Krug von Nidda, Jonas T1 - Sodium-ion battery research @ BAM (I): investigating the thermal runaway behaviour of commercial sodium-ion battery cells N2 - Commercially available sodium-ion battery (SIB) cells, with energy densities comparable to lithium-ion battery (LIB) cells based on LiFePO4, were investigated regarding their safety behaviour under thermal abuse conditions. Tests were carried out in an inert atmosphere. The SIB-cells went into thermal runaway (TR), intriguingly, even at a rather low state of charge of 30%. The TR-event was coupled with a pronounced jelly roll ejection, challenging the interpretation of the TR-diagrams. These findings highlight the necessity of incorporating SIB-cells into the ongoing safety classification discussions for LIB-cells. KW - Sodium Ion Batteries KW - Thermal Runaway KW - Battery safety PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647652 DO - https://doi.org/10.1039/d5se00687b SN - 2398-4902 VL - 9 IS - 21 SP - 5832 EP - 5838 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Campos de Oliveira, Paula A1 - Markötter, Henning A1 - Zhang, Wen A1 - Eddah, Mustapha A1 - Widjaja, Martinus Putra A1 - Remacha, Clément A1 - Bruno, Giovanni T1 - Enhanced image segmentation of refractories using synchrotron X-ray computed tomography and machine learning techniques N2 - The microstructure of refractory materials is complex, featuring a variety of mineral phases, agglomerates, defects, and controlled porosity. The behavior of refractories at high temperatures adds another layer of complexity, as phase transitions and particle rearrangements can strongly affect their properties. To analyze such intricate microstructure, advanced imaging techniques such as Synchrotron X-ray Computed Tomography (SXCT) allow detailed 3D visualization and quantification of features up to 1 μm. However, the intricacy of these microstructures makes phase identification (known as image segmentation) in digital images a challenging process. X-ray images often contain noise and image artifacts, making the analysis more difficult. Therefore, this work describes image segmentation and artifact reduction methods to characterize refractories using X-ray imaging. We studied refractory ceramics used in the aerospace industry, primarily composed of fused silica. For image segmentation, the traditional approach of greyscale thresholding was compared with machine learning. Greyscale thresholding relies on predefined algorithms to assign phases based on intensity values. In contrast, machine learning extracts patterns from large datasets, enabling more adaptive and accurate segmentation. By combining high-resolution SXCT and machine learning analysis algorithms, we successfully segmented previously uncharacterized 3D microstructural key features of refractories, including agglomerates, grain boundaries, pore size distribution and interconnectivity. Compared to traditional methods, the machine learning-enhanced segmentation presented a more accurate quantification of porosity and defects. The integration of advanced imaging techniques with machine learning segmentation significantly improves the characterization of refractory materials, providing a more precise understanding of the relationship between microstructure and material performance, supporting the development of innovative industrial solutions. T2 - The 19th Biennial International Technical Conference on Refractories (UNITECR 2025) CY - Cancún, Mexiko DA - 27.10.2025 KW - Synchrotron X-ray Tomography KW - Machine learning KW - Image segmentation KW - Ceramics KW - Refractories PY - 2025 SP - 478 EP - 481 AN - OPUS4-64803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Effect of the time dependent loading of type IV cylinders using a multiscale model N2 - Based on the burst test results conducted at BAM, loading rates will affect the strength of composite pressure vessels (CPV). The multiscale fibre-break model developed at Mines ParisTech is able to described this behaviour explained by the stress relaxation in the viscoelastic matrix. The experiment showed an increase of burst pressure when an extreme slow loading rate is used compare to the slow loading rate. Is is then discovered that the model could predict well for the slow loading rate but not for the extreme slow loading rate. It may have something to do with the fibre re-orientation of the hoop layer during the extreme slow loading rate test. Further investigation is required to discover this hypothesis. T2 - International Conference on Hydrogen Safety CY - Adelaide, Australia DA - 24.09.2019 KW - Composite pressure vessels KW - Fibre break KW - Multiscale model KW - Time dependent effect PY - 2019 AN - OPUS4-50262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg W. A1 - Thionnet, A. T1 - Defining a Reduced Volume Zone for the Simulation of Burst Test on a Composite Pressure Vessels N2 - The random nature of fibre break in composite materials has to be modelled in all part of the structure as it may contain millions of fibres. The reduced volume method was introduced to determine a smaller zone where we could characterise the strength based on the accumulation of fibre break, hence increasing the computation time T2 - The 8th International Conference on Structural Analysis of Advanced Materials CY - Tarbes, France DA - 28.08.2018 KW - Reduced volume method KW - Composite structures KW - Pressure vessels KW - Finite element method KW - Multiscale model PY - 2018 SP - 217508 AN - OPUS4-48928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Effect of input properties on the predicted failure of a composite pressure vessel using a multiscale model N2 - The effect of different Weibull parameter from different carbon fibres to predict the failure of a type IV pressure vessel has been analysed. In addition, the effect of the shape and scale parameter has also been done. T700S fibres gave higher burst pressure prediction as it has higher scale parameter and higher stiffness of the fibres. When smaller scale parameter is introduced, lower burst pressure prediction was found and vice versa. Whereas, higher burst pressure prediction was observed when smaller shape parameter was used and vice versa. The latter must have something to do with the higher probability of stronger and weaker fibres in the smaller percentile. T2 - FiBreMoD Conference CY - Leuven, Belgium DA - 11.12.2019 KW - Composite pressure vessel KW - Fibre break KW - Multiscale model KW - Weibull parameters PY - 2019 AN - OPUS4-50115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Alves, M. A1 - Mavrogordato, M. A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg W. A1 - Thionnet, A. T1 - Effect of the Time Dependent Loading of Type IV Cylinders Using a Multiscale Model N2 - The Reduced Volume Method (RVM) has been used to evaluate the multiscale fibre break model developed at Mines ParisTech. It allows the model to be assigned only at certain part of the structures without necessarily compromising the final prediction. An attempt to model a simple unidirectional composite structure has also been carried out and gave a satisfying result. This paper deals with the application of the RVM to real scale type IV composite cylinders, where its stacking sequence was evaluated through micro-CT scans conducted with the collaboration of the University of Southampton. Two modelling geometries were evaluated and compared with the corresponding experimental results. T2 - 8th International Conference on Hydrogen Safety (ICHS) CY - Adelaide, Australia DA - 24.09.2019 KW - Fibre break KW - Multiscale modelling KW - Type IV pressure vessel KW - Time dependent loading PY - 2019 SP - ID131 AN - OPUS4-49273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - General update of the PhD work for mid_term consortium meeting N2 - Before the multiscale model is used to calculate real scale composite structures, a study to improve the effectiveness is required, especially the computation time. The reduced volume method has been studied and proved to be useful for the multiscale model of Mines ParisTech. T2 - Mid_Term Consortium Meeting of FiBreMoD CY - Imperial College London, United Kingdom DA - 11.09.2018 KW - Reduced volume method KW - Integral range KW - Composite pressure vessels KW - Multiscale model KW - Fibre breaks PY - 2018 AN - OPUS4-48570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Accumulation of fibre breaks in racetrack specimens and type IV pressure vessels N2 - The reduced volume method has been studied using the fibre break model from Mines ParisTech. This method allows less 3D finite elements to be used for predicting the failure of real scale composite structures. A favourable comparison results with racetrack specimens has been achieved. However, the comparison study with a type IV pressure vessels still requires more Evaluation. T2 - Consortium Meeting FiBreMoD CY - Toyota Motor Europe, Belgium DA - 27.03.2019 KW - Reduced volume method KW - Integral range KW - Multiscale model KW - Fibre break KW - Composite pressure vessels KW - Racetrack specimens PY - 2019 AN - OPUS4-48571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Accumulation of Fibre Breaks under Time Dependent Loads in CFRP Materials of Pressure Vessels N2 - BAM has discovered that the reliability of tested composite pressure vessel will be altered when the loading speed is varied. The ageing of composite materials in general gives negative effect to the structure, however there might be positive effect occurs due to the load redistribution between the fibres. The study on the negative effect of ageing has been compared favourably with the fibre break model from Mines ParisTech. To improve the model's capability, this positive effect should also be implemented. The problem however to evaluate real scale model that might take extensive computation time. The reduced volume method then was proposed to improve the calculation time. The next study is then to check the approach on different loading condition and compare the result with experimental data provided by BAM. T2 - PhD Day 2018 CY - Evry, France DA - 20.06.2018 KW - Fibre Break Accumulation KW - Carbon Fibre Pressure Vessels KW - Time Effect KW - Integral Range PY - 2018 AN - OPUS4-45567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - The Application of a Reduced Volume Method for the Simulation of the Characterisation of a Carbon Fibre Pressure Vessel N2 - The developed fibre-break model from Mines-ParisTech requires an improvement in terms of calculation time for analysing real-scale model. By implementing the proposed method, the number of representative volume element and monte-carlo run can be optimised to obtain certain confidence level of the results. By reducing this level, faster computation can be done. This approach has given us a positive insight that it can be used for studying real-scale model of composite pressure vessels. T2 - European Conference on Composite Materials 2018 CY - Athens, Greece DA - 25.06.2018 KW - Composite pressure vessel KW - Fibre break KW - Integral range KW - Representative volume element PY - 2018 AN - OPUS4-45563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Fibre Misalignment Distribution of the Hoop Layer from a Type IV Pressure Vessels N2 - A high resolution micro-CT scan of a hoop layer from type IV cylinder has been carried out. The directional Gradient function had been used to analyse the in-plane and out-of-plane fibre misalignment from the Micro-CT Images. A correlation Analysis of the directional Gradient has also been performed and compared with the existing results from the cited paper. T2 - Secondment at Siemens Industry Software CY - Leuven, Belgium DA - 22.05.2019 KW - Micro-CT KW - Composite pressure vessels KW - Fibre misalignment KW - Fibre waviness KW - Correlation length KW - Correlation width PY - 2019 AN - OPUS4-48572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Popiela, Bartosz A1 - Günzel, Stephan A1 - Oktaviany, Jennifer A1 - Widjaja, Martinus Putra A1 - Mair, Georg W. A1 - Seidlitz, Holger T1 - Influence of Internal Pressure Regulation During Filament Winding on Failure Mechnism in Type 4 Pressure Vessels: A Case Study N2 - Hydrogen storage is a crucial part of the hydrogen value chain, particularly in terms of safety and social acceptance of hydrogen technologies. For on-board and transportation applications, hydrogen is commonly stored as a compressed gas in pressure vessels. Full composite wrapped Type 4 pressure vessels are especially beneficial due to their high weight-saving potential and their capability to withstand high working pressures. To maintain an appropriate safety level, the mechanical behavior of the composite structure has been the subject of investigation in numerous studies. In this study, the failure mechanisms of two designs of Type 4 cylinders are investigated. The two designs differ solely in the manufacturing process parameters, particularly the internal pressure applied during the filament winding process. Variations in internal pressure result in different residual stress states and changes in the quality of the composite structure. The stacking sequence, materials used, and other manufacturing parameters remain unchanged. The cylinders show different failure mechanisms in slow burst tests: one design fails in hoop windings, while the other one fails in helical windings, despite no stress exaggeration in the fiber direction being observed with embedded optical fibers or in numerical simulations. To explain the failure mechanisms, the quality of the cylinders is investigated. The results of X-ray computed tomography and pulse-echo investigation, highlight the complexity of the interactions between manufacturing process parameters, residual stresses, manufacturing quality, and the mechanical behavior of composite pressure vessels. Resin-rich areas in the composite material are identified as a possible cause of the differing failure mechanisms. T2 - 11th International Conference on Hydrogen Safety ICHS 2025 CY - Seoul, South Korea DA - 22.09.2025 KW - Composite KW - Pressure vessel KW - Filament winding KW - Burst test PY - 2025 SP - 1 EP - 12 AN - OPUS4-64452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Accumulation of Fibre Breaks in Carbon Fibre Reinforced Plastic Composite Pressure Vessels N2 - A general explanation of reduced volume method was introduced. This has allowed the simulation runs much faster without compromising the failure prediction of the multiscale fibre break model. The validation results with a material samples were shown. A certain mesh configuration to evaluate the cylinder has also been found to be the most effective in terms of computation time and prediction accuracy. T2 - FiBreMoD Consortium Meeting CY - Mines ParisTech, Paris, France DA - 05.09.2019 KW - Multiscale model KW - Fibre break KW - Reduced volume method KW - Composite pressure vessels KW - Integral range PY - 2019 AN - OPUS4-48931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Modelling an Improved NOL Ring Test using a Reduced Volume Method for the Characterisation of Composite Cylinders N2 - A reduced volume method has been used to evaluate the fibre break model to characterise the strength of unidirectional composite materials. This evaluation has led to an increase of computational speed. This study validated the prediction with the experimental result of NOL ring test. T2 - The 22nd International Conference on Composite Materials CY - Melbourne, Australia DA - 11.08.2019 KW - NOL ring test KW - Reduced volume method KW - Multiscale model KW - Fibre break KW - Composite pressure vessels PY - 2019 AN - OPUS4-48930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Accumulation of fibre breaks under time-dependent loads in CFRP materials of pressure vessels N2 - For the moment, there is no existing method to quantify the time-dependent effect on carbon fibre pressure vessels or composite pressure vessels (CPV) in general. Hence, BAM started to investigate how to proof this phenomenon. Several researches has been done and discovered that it is possible for aged pressure vessels to have higher burst pressure value than a new vessels. However, the scientific explanation behind is still an on-going research. Whether the existing model can be used or using another measurement method to gain more data is still in question. Therefore, it is required to find a suitable method to explain such phenomenon and even develop furthermore to give a strength criterion for certain types of pressure vessels T2 - Fibremod 1st Consortium Meeting CY - Berlin, Germany DA - 04.10.2017 KW - Carbon fibre pressure vessels KW - Damage accumulation KW - Acoustic emission KW - Fibre-break model PY - 2017 AN - OPUS4-42499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Islam, F. A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg W. A1 - Thionnet, A. T1 - Effect of input properties on the predicted failure of a composite pressure vessel using a multiscale model N2 - It is pertinent to have a correct description of fibre strength described by the twp parameter Weibull distribution when evaluating a type Iv pressure vessel using the fibre break multiscale model developed at Mines ParisTech. Earlier studies have shown a positive comparison result when T600S fibre strength were used. This study has discovered what would be the effect on the predicted strength when T700S strength is used. T2 - FiBreMoD Conference CY - Leuven, Belgium DA - 11.12.2019 KW - Composite Pressure Vessel KW - Fibre break KW - Multiscale model KW - Weibull parameter PY - 2019 SP - 55 EP - 56 AN - OPUS4-50109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg W. A1 - Thionnet, A. T1 - Modelling an Improved NOL Ring Test Using a Reduced Volume Method for the Characterisation of composite Cylinders N2 - The reduced volume method has found a particular zone to be used for evaluating the strength of unidirectional composite materials. To validate the method, modelling an experimental test where it has the same basic assumption of the model had been carried out. The result was favourable as the model can predict the average value from the experiment and also the time dependent effect. T2 - The 22nd International Conference on Composite Materials CY - Melbourne, Australia DA - 11.08.2019 KW - NOL Ring test KW - Multiscale model KW - Reduced Volume Method KW - Composite pressure vessels KW - Fibre break PY - 2019 AN - OPUS4-48929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - The Application of a Reduced Volume Method for the Simulation of the Characterisation of a Carbon Fibre Pressure Vessel N2 - The fibre-break model developed at Mines ParisTech has been able to show the effect of pressurisation rate on pressure vessels. This simulation however had to use a smaller model, as the computation time becomes enormous for simulating a real-scale pressure vessel. Reduced volume method then has been studied on different model configuration. The study showed that the method can be used only on certain configurations. It also gives a positive insight to reduce the computation time. T2 - FiBreMoD Consortium Meeting CY - Leuven, Belgium DA - 18.04.2018 KW - Reduced volume method KW - Integral range KW - Fibre break model KW - Representative volume element KW - Computation time PY - 2018 AN - OPUS4-45638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Defining a reduced volume zone for the simulation of burst test on composite pressure vessels N2 - The developed model uses a Monte-Carlo simulation to evaluate the accumulation of fibre breaks on composite structures. As the micromechanical aspects affecting the accumulation process is evaluated within a particular finite element size (0.1 mm x 0.1 mm x 8 mm), the industries would not be able to use the model on a real-size structure. Therefore, the reduced volume method is used to provide the statistical information between the required number of elements and simulations. T2 - The 8th International Conference on Structural Analysis of Advanced Materials CY - Tarbes, France DA - 28.08.2018 KW - Reduced volume method KW - Composite structures KW - Pressure vessels KW - Finite element method PY - 2018 AN - OPUS4-48569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Sample Performance Chart (SPC) for displaying the results from a multiscale model N2 - The stacking sequence of a real scale type IV pressure vessels has been found. Feasibility study of a multiscale model has been carried out by modifying the original stacking sequence. All of the results were displayed in a Sample Performance Chart (SPC), where different burst pressure in terms of mean and scatter had been found. T2 - Consortium Meeting FiBreMoD CY - Valence, France DA - 17.02.2020 KW - Fibre break KW - Multiscale model KW - Reduced volume method KW - Sample performance chart KW - Type IV pressure vessels PY - 2020 AN - OPUS4-50563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Moosavi, Robabeh A1 - John, Sebastian A1 - Schumacher, David A1 - Grunwald, Marcel A1 - Auster, Jürgen A1 - Szczepaniak, Marius A1 - Mair, Georg W. A1 - Waske, Anja T1 - Impact damage evaluation of hydrogen composite pressure vessels by analysing computed tomography images N2 - The objective of this work is to find a method that describes the degree of damage from an impact experiment. This experiment was performed on Composite Pressure Vessels (CPV) in order to find the correlation of impact damage to the residual burst pressure. Computed Tomography (CT) approach was used to capture the before and after impact condition of the CPVs. The Wasserstein function was used to calculate how much the after impact image has differed from the original one. In the end, a good correlation was obtained to the residual burst pressure. T2 - HyFiSyn Conference CY - Online meeting DA - 15.09.2021 KW - Hydrogen KW - Composite pressure vessel KW - Carbon fibre KW - Burst test KW - Image analysis KW - Computed tomography (CT) PY - 2021 SP - 31 EP - 32 AN - OPUS4-53494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Impact damage evaluation of hydrogen composite pressure vessels by analysing computed tomography images N2 - The objective of this work is to find a method that describes the degree of damage from an impact experiment. This experiment was performed on Composite Pressure Vessels (CPV) in order to find the correlation of impact damage to the residual burst pressure. Computed Tomography (CT) approach was used to capture the before and after impact condition of the CPVs. The Wasserstein function was used to calculate how much the after impact image has differed from the original one. In the end, a good correlation was obtained to the residual burst pressure. The smaller the Wasserstein distance is, the higher the residual burst pressure would be and vice versa. T2 - HyFiSyn Conference CY - Online meeting DA - 15.09.2021 KW - Hydrogen KW - Composite pressure vessel KW - Carbon fibre KW - Burst test KW - Image analysis KW - Computed tomography (CT) PY - 2021 AN - OPUS4-53496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eddah, Mustapha A1 - Markötter, Henning A1 - Mieller, Björn A1 - Widjaja, Martinus Putra A1 - Beckmann, Jörg A1 - Bruno, Giovanni T1 - Multi-energy high dynamic range synchrotron X-ray computed tomography N2 - Synchrotron X-ray computed tomography (SXCT) is regularly used in materials science to correlate structural properties with macroscopic properties and to optimize manufacturing processes. The X-ray beam energy must be adapted to the sample properties, such as size and density. If both strongly and weakly absorbing materials are present, the contrast to the weakly absorbing materials is lost, resulting in image artifacts and a poor signal-tonoise ratio (SNR). One particular example is a low-temperature co-fired ceramics (LTCC), in which metal connections are embedded in a ceramic matrix and form 3-dimensional conducting structures. This article describes a method of combining SXCT scans acquired at different beam energies, significantly reducing metal artifacts, and improving image quality. We show how to solve the difficult task of merging the scans at low and high beam energy. Our proposed merging approach achieves up to 35 % improvement in SNR within ceramic regions adjacent to metallic conductors. In this way, previously inaccessible regions within the ceramic structure close to the metallic conductors are made accessible. The paper further discusses methodological requirements, limitations, and potential extensions of the presented multi-energy SXCT merging technique. KW - Synchrotron computed tomography KW - Reconstruction algorithm KW - High dynamic range KW - Data merging KW - Low-temperature cofired ceramics PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652339 DO - https://doi.org/10.1016/j.tmater.2025.100079 SN - 2949-673X VL - 9 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam AN - OPUS4-65233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Waske, Anja A1 - Günster, Jens A1 - Widjaja, Martinus Putra A1 - Neumann, C. A1 - Clozel, M. A1 - Meyer, A. A1 - Ding, J. A1 - Zhou, Z. A1 - Tian, X. T1 - Challenges in the Technology Development for Additive Manufacturing in Space N2 - Instead of foreseeing and preparing for all possible scenarios of machine failures, accidents, and other challenges arising in space missions, it appears logical to take advantage of the flexibility of additive manufacturing for “in-space manufacturing” (ISM). Manned missions into space rely on complicated equipment, and their safe operation is a great challenge. Bearing in mind the absolute distance for manned missions to the Moon and Mars, the supply of spare parts for the repair and replacement of lost equipment via shipment from Earth would require too much time. With the high flexibility in design and the ability to manufacture ready-to-use components directly from a computer-aided model, additive manufacturing technologies appear to be extremely attractive in this context. Moreover, appropriate technologies are required for the manufacture of building habitats for extended stays of astronauts on the Moon and Mars, as well as material/feedstock. The capacities for sending equipment and material into space are not only very limited and costly, but also raise concerns regarding environmental issues on Earth. Accordingly, not all materials can be sent from Earth, and strategies for the use of in-situ resources, i.e., in-situ resource utilization (ISRU), are being envisioned. For the manufacturing of both complex parts and equipment, as well as for large infrastructure, appropriate technologies for material processing in space need to be developed. KW - Additive manufacturing KW - Space KW - Process PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549204 DO - https://doi.org/10.1016/j.cjmeam.2022.100018 SN - 2772-6657 VL - 1 IS - 1 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-54920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -