TY - CONF A1 - John, Sebastian A1 - Auster, Jürgen A1 - Widjaja, Martinus Putra A1 - Duffner, Eric A1 - Mair, Georg W. T1 - NIP II - Forschungsvorhaben „DELFIN“ N2 - Überblick über Projektinhalte und -ergebnisse aus dem Forschungsvorhaben Delfin „Erforschung alternativer Materialien und Fertigungsprozesse für kosten- und gewichtsreduzierte Druckbehälter aus endlosfaserverstärkten Kunststoff“ T2 - SAMPE Kolloquium CY - Online meeting DA - 15.01.2022 KW - Wasserstoff KW - Druckbehälter KW - Impact PY - 2022 AN - OPUS4-58064 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - John, Sebastian A1 - Widjaja, Martinus Putra A1 - Mair, Georg W. T1 - Modalanalyse als Werkzeug zur Lebensdauerabschätzung bei Composite-Druckbehältern N2 - Hochbeanspruchte Bauteile wie Druckbehälter bergen im Falle eines Versagens ein erhebliches Gefährdungspotential für Mensch und Umgebung. Trotz der Auslegung mit hohen Sicherheitsfaktoren kommt es durch die hauptsächlich bei mobilen Anwendungen eingesetzten Leichtbauwerkstoffe und Materialkombinationen zu komplexen Degradations- und Schädigungsvorgängen, welche unter ungünstigen Umständen zu einem frühzeitigen Versagen führen können. Die hier vorgestellten Untersuchungen beziehen sich auf Typ IV-Gasspeicher, die als Wasserstofftanks in KFZ zur Anwendung kommen. Durch den Einsatz eines Messverfahrens auf Basis einer experimentellen Modalanalyse (EMA) sollen Schädigungs- und Degradationsgrad künftig zerstörungsfrei erfasst und auch einsatzbegleitend überwacht werden können. T2 - DAGA 2021 - 47. Jahrestagung für Akustik CY - Wien, Österreich DA - 15.08.2021 KW - Impact KW - Modalanalyse KW - Druckbehälter PY - 2021 VL - 47 SP - 1202 EP - 1205 AN - OPUS4-53626 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg W. A1 - Thionnet, A. T1 - The Application of a Reduced Volume Method for the Simulation of the Characterisation of a Carbon Fibre Pressure Vessel N2 - The developed model has certain limitations of the element size to be used in the simulation to characterise the strength of composite materials. A reduced volume method is proposed in order to reduce the number of degree of freedom of the finite element simulation.This study has revealed certain configuration to be followed to speed up the computation time. T2 - The 18th European Conference on Composite Materials CY - Athens, Greece DA - 24.06.2018 KW - Composite pressure vessel KW - Fibre break KW - Integral range KW - Representative volume element PY - 2018 SP - 1193-892 AN - OPUS4-48927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dayani, Shahabeddin A1 - Markötter, Henning A1 - Schmidt, Anita A1 - Widjaja, Martinus Putra A1 - Bruno, Giovanni T1 - Multi-level X-ray computed tomography (XCT) investigations of commercial lithium-ion batteries from cell to particle level N2 - Adopting X-ray computed tomography (XCT) for ex-situ characterization of battery materials has gained interest in the past decade. The main goal of this paper is to demonstrate the effectiveness of several X-ray computer tomography techniques to study commercial batteries. General guidelines are provided to select the most suitable imaging equipment and parameters for investigations of lithium-ion batteries, spanning the length scales from cell to electrode, down to particle level. Relevantly, such parameters would also be suitable for operando experiments. Safety mechanisms and manufacturing inconsistencies at cell level as well as defects and inhomogeneity in cathode and anode is illustrated and quantified. Furthermore, relation of beam energy and sample-detector-distance on contrast retrieved from attenuation and phase shift is inspected using Synchrotron XCT. KW - Non-destructive testing KW - X-ray computed tomography KW - Synchrotron X-ray computed tomography KW - Lithium-ion battery PY - 2023 DO - https://doi.org/10.1016/j.est.2023.107453 SN - 2352-152X VL - 66 SP - 107453 PB - Elsevier Ltd. AN - OPUS4-57512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Popiela, Bartosz A1 - Günzel, Stephan A1 - Sklorz, Christian A1 - Widjaja, Martinus Putra A1 - Mair, Georg W. A1 - Seidlitz, Holger T1 - Application of the incremental hole-drilling method for residual stress determination in type 4 pressure vessels N2 - Hole-drilling method is a standardized technique for obtaining residual stresses in isotropic structures. Previous studies provide a foundation that enables the use of this method to investigate orthotropic structures, such as fiber-reinforced composites. In this study, the incremental hole-drilling method was applied to investigate residual stresses in filament wound type 4 composite pressure vessels. The investigated composite cylinders were manufactured with different internal pressure functions during the winding process, to achieve distinct residual stress states. Additionally, the influence of the initial loading under sustained internal pressure and increased temperature on the stress distribution was investigated. It was shown that the residual stress state can be influenced by varying the internal pressure in the winding process. After testing at sustained load and increased temperature, a stress redistribution was observed, which took place due to creep phenomena. Finally, a discussion of the challenges for the application of the hole-drilling method to composite pressure vessels is provided. KW - Hole-drilling method KW - Filament winding KW - Type 4 composite pressure vessels KW - Residual stresses KW - Stress redistribution PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627765 DO - https://doi.org/10.1515/mt-2024-0328 SN - 2195-8572 VL - 67 IS - 4 SP - 663 EP - 674 PB - Walter de Gruyter GmbH AN - OPUS4-62776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Isaac, Augusta A1 - Serrano‐Munoz, Itziar A1 - Kostka, Aleksander A1 - Widjaja, Martinus Putra A1 - González‐Doncel, Gaspar A1 - Bruno, Giovanni A1 - Fernández, Ricardo T1 - Subgrain and Cavity Development during Creep of Al‐3.85%Mg N2 - It is classically considered that the creep mechanisms for type M (e.g., pure Al) and type A alloys (e.g., Al–Mg alloys) are different. In previous studies, it is predicated that fractal dislocation structures build up during creep can unify the creep behavior of pure Al and Al–Mg alloys. So far, good agreement between model and experimental data for pure Al is obtained. In this work, an Al‐3.85%Mg material crept at different strain levels (6%, 12%, 24%, and 35%) is analyzed by means of electron channelling contrast imaging. The formation of subgrains is observed at very large deformations (35%). Further examinations at 35% deformation, using electron backscatter diffraction, indicate that the subgrains and cavities tend to localize at regions where high intergranular stress mismatch is expected to occur. Laboratory X‐ray computed tomography is used to analyze the evolution of cavities between 12% and 24% stages, indicating that the fractal dimension of the cavities smaller than 100 μm varies with creep strain, as a reflection of the evolution of dislocation distribution. It is explained how the present data feed the model of the creep behavior of Al‐3.85%Mg. KW - Al–Mg alloys KW - Creep KW - Dislocations KW - Fractal KW - Intergranular residual stress KW - Subgrains PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-645905 DO - https://doi.org/10.1002/adem.202500263 SN - 1438-1656 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-64590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böttcher, Nils A1 - Sander, Luise A1 - Ulbricht, Alexander A1 - Widjaja, Martinus Putra A1 - Fellinger, Tim-Patrick A1 - Schmidt, Anita A1 - Krug von Nidda, Jonas T1 - Sodium-ion battery research @ BAM (I): investigating the thermal runaway behaviour of commercial sodium-ion battery cells N2 - Commercially available sodium-ion battery (SIB) cells, with energy densities comparable to lithium-ion battery (LIB) cells based on LiFePO4, were investigated regarding their safety behaviour under thermal abuse conditions. Tests were carried out in an inert atmosphere. The SIB-cells went into thermal runaway (TR), intriguingly, even at a rather low state of charge of 30%. The TR-event was coupled with a pronounced jelly roll ejection, challenging the interpretation of the TR-diagrams. These findings highlight the necessity of incorporating SIB-cells into the ongoing safety classification discussions for LIB-cells. KW - Sodium Ion Batteries KW - Thermal Runaway KW - Battery safety PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647652 DO - https://doi.org/10.1039/d5se00687b SN - 2398-4902 VL - 9 IS - 21 SP - 5832 EP - 5838 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Campos de Oliveira, Paula A1 - Markötter, Henning A1 - Zhang, Wen A1 - Eddah, Mustapha A1 - Widjaja, Martinus Putra A1 - Remacha, Clément A1 - Bruno, Giovanni T1 - Enhanced image segmentation of refractories using synchrotron X-ray computed tomography and machine learning techniques N2 - The microstructure of refractory materials is complex, featuring a variety of mineral phases, agglomerates, defects, and controlled porosity. The behavior of refractories at high temperatures adds another layer of complexity, as phase transitions and particle rearrangements can strongly affect their properties. To analyze such intricate microstructure, advanced imaging techniques such as Synchrotron X-ray Computed Tomography (SXCT) allow detailed 3D visualization and quantification of features up to 1 μm. However, the intricacy of these microstructures makes phase identification (known as image segmentation) in digital images a challenging process. X-ray images often contain noise and image artifacts, making the analysis more difficult. Therefore, this work describes image segmentation and artifact reduction methods to characterize refractories using X-ray imaging. We studied refractory ceramics used in the aerospace industry, primarily composed of fused silica. For image segmentation, the traditional approach of greyscale thresholding was compared with machine learning. Greyscale thresholding relies on predefined algorithms to assign phases based on intensity values. In contrast, machine learning extracts patterns from large datasets, enabling more adaptive and accurate segmentation. By combining high-resolution SXCT and machine learning analysis algorithms, we successfully segmented previously uncharacterized 3D microstructural key features of refractories, including agglomerates, grain boundaries, pore size distribution and interconnectivity. Compared to traditional methods, the machine learning-enhanced segmentation presented a more accurate quantification of porosity and defects. The integration of advanced imaging techniques with machine learning segmentation significantly improves the characterization of refractory materials, providing a more precise understanding of the relationship between microstructure and material performance, supporting the development of innovative industrial solutions. T2 - The 19th Biennial International Technical Conference on Refractories (UNITECR 2025) CY - Cancún, Mexiko DA - 27.10.2025 KW - Synchrotron X-ray Tomography KW - Machine learning KW - Image segmentation KW - Ceramics KW - Refractories PY - 2025 SP - 478 EP - 481 AN - OPUS4-64803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Effect of the time dependent loading of type IV cylinders using a multiscale model N2 - Based on the burst test results conducted at BAM, loading rates will affect the strength of composite pressure vessels (CPV). The multiscale fibre-break model developed at Mines ParisTech is able to described this behaviour explained by the stress relaxation in the viscoelastic matrix. The experiment showed an increase of burst pressure when an extreme slow loading rate is used compare to the slow loading rate. Is is then discovered that the model could predict well for the slow loading rate but not for the extreme slow loading rate. It may have something to do with the fibre re-orientation of the hoop layer during the extreme slow loading rate test. Further investigation is required to discover this hypothesis. T2 - International Conference on Hydrogen Safety CY - Adelaide, Australia DA - 24.09.2019 KW - Composite pressure vessels KW - Fibre break KW - Multiscale model KW - Time dependent effect PY - 2019 AN - OPUS4-50262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg W. A1 - Thionnet, A. T1 - Defining a Reduced Volume Zone for the Simulation of Burst Test on a Composite Pressure Vessels N2 - The random nature of fibre break in composite materials has to be modelled in all part of the structure as it may contain millions of fibres. The reduced volume method was introduced to determine a smaller zone where we could characterise the strength based on the accumulation of fibre break, hence increasing the computation time T2 - The 8th International Conference on Structural Analysis of Advanced Materials CY - Tarbes, France DA - 28.08.2018 KW - Reduced volume method KW - Composite structures KW - Pressure vessels KW - Finite element method KW - Multiscale model PY - 2018 SP - 217508 AN - OPUS4-48928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -