TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Cakir, Cafer Tufan A1 - Radtke, Martin A1 - Haider, M. Bilal A1 - Emmerling, Franziska A1 - F. M. Oliveira, P. A1 - Michalchuk, Adam T1 - Dispersive x-ray absorption spectroscopy for time-resolved in situ monitoring of mechanochemical reactions N2 - X-ray absorption spectroscopy (XAS) provides a unique, atom-specific tool to probe the electronic structure of solids. By surmounting long-held limitations of powder-based XAS using a dynamically averaged powder in a Resonant Acoustic Mixer (RAM), we demonstrate how time-resolved in situ (TRIS) XAS provides unprecedented detail of mechanochemical synthesis. The use of a custom-designed dispersive XAS (DXAS) setup allows us to increase the time resolution over existing fluorescence measurements from ∼15 min to 2 s for a complete absorption spectrum. Hence, we here establish TRIS-XAS as a viable method for studying mechanochemical reactions and sampling reaction kinetics. The generality of our approach is demonstrated through RAM-induced (i) bottom-up Au nanoparticle mechanosynthesis and (ii) the synthesis of a prototypical metal organic framework, ZIF-8. Moreover, we demonstrate that our approach also works with the addition of a stainless steel milling ball, opening the door to using TRIS-DXAS for following conventional ball milling reactions. We expect that our TRIS-DXAS approach will become an essential part of the mechanochemical tool box. KW - In situ studies KW - Dipsersive XAS KW - Mechanochemistry KW - Time-resolved PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567659 DO - https://doi.org/10.1063/5.0130673 SN - 1089-7690 VL - 157 IS - 21 SP - 1 EP - 12 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-56765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reiche, I. A1 - Muller, K. A1 - Alberic, M. A1 - Scharf, O. A1 - Wahning, A. A1 - Bjeoumikhov, A. A1 - Radtke, Martin A1 - Simon, R. T1 - Discovering vanished paints and naturally formed gold nanoparticles on 2800 years old Phoenician ivories using SR-FF-microXRF with the color X-ray camera N2 - Phoenician ivory objects (8th century B.C., Syria) from the collections of the Badisches Landesmuseum, Karlsruhe, Germany, have been studied with full field X-ray fluorescence microimaging, using synchrotron radiation (SR-FF-microXRF). The innovative Color X-ray Camera (CXC), a full-field detection device (SLcam), was used at the X-ray fluorescence beamline of the ANKA synchrotron facility (ANKA-FLUO, KIT, Karlsruhe, Germany) to noninvasively study trace metal distributions at the surface of the archeological ivory objects. The outstanding strength of the imaging technique with the CXC is the capability to record the full XRF spectrum with a spatial resolution of 48 µm on a zone of a size of 11.9 × 12.3 mm² (264 × 264 pixels). For each analyzed region, 69696 spectra were simultaneously recorded. The principal elements detected are P, Ca, and Sr, coming from the ivory material itself; Cu, characteristic of pigments; Fe and Pb, representing sediments or pigments; Mn, revealing deposited soil minerals; Ti, indicating restoration processes or correlated with Fe sediment traces; and Au, linked to a former gilding. This provides essential information for the assessment of the original appearance of the ivory carvings. The determined elemental maps specific of possible pigments are superimposed on one another to visualize their respective distributions and reconstruct the original polychromy and gilding. Reliable hypotheses for the reconstruction of the original polychromy of the carved ivories are postulated on this basis. KW - SR-FF-microXRF KW - Elemental imaging KW - Ivory KW - Paints KW - Au NPs KW - Egyptian blue KW - Fe PY - 2013 DO - https://doi.org/10.1021/ac4006167 SN - 0003-2700 SN - 1520-6882 VL - 85 IS - 12 SP - 5857 EP - 5866 PB - American Chemical Society CY - Washington, DC AN - OPUS4-30222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Die Himmelsscheibe von Nebra: Vermutungen und Fakten T2 - Schul- und Volkssternwarte CY - Dahlewitz, Germany DA - 2012-03-09 PY - 2012 AN - OPUS4-26927 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Maack, Stefan A1 - Bertovic, Marija A1 - Radtke, Martin A1 - et al., ED - Wahlster, W. ED - Winterhalter, C. T1 - Deutsche Normungsroadmap künstliche Intelligenz N2 - Rund ein Jahr haben DIN und DKE in einem gemeinsamen Projekt mit dem Bundesministerium für Wirtschaft und Energie und zusammen mit ca. 300 Fachleuten aus Wirtschaft, Wissenschaft, öffentlicher Hand und Zivilgesellschaft an der Normungsroadmap Künstliche Intelligenz gearbeitet. Eine hochrangige Steuerungsgruppe unter dem Vorsitz von Prof. Wolfgang Wahlster hat die Erarbeitung koordiniert und begleitet. Ziel der Roadmap ist die frühzeitige Entwicklung eines Handlungsrahmens für die Normung und Standardisierung, der die internationale Wettbewerbsfähigkeit der deutschen Wirtschaft unterstützt und europäische Wertmaßstäbe auf die internationale Ebene hebt. KW - Künstliche Intelligenz KW - Normung KW - Roadmap PY - 2020 UR - https://www.din.de/resource/blob/772438/ecb20518d982843c3f8b0cd106f13881/normungsroadmap-ki-data.pdf VL - 2020 SP - 1 EP - 232 PB - Deutsches Institut für Normung (DIN) CY - Berlin ET - 1. AN - OPUS4-51733 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - C. Pardo Pérez, L. A1 - Arndt, A. A1 - Stojkovikj, S. A1 - Y. Ahmet, I. A1 - T. Arens,, J. A1 - Dattila, F. A1 - Wendt, R. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Davies, V. A1 - Höflich, K. A1 - Köhnen, E. A1 - Tockhorn, P. A1 - Golnak, R. A1 - Xiao, J. A1 - Schuck, G. A1 - Wollgarten, M. A1 - López, N. A1 - T. Mayer, M. T1 - Determining Structure-Activity Relationships in Oxide Derived CuSn Catalysts During CO2 Electroreduction Using X-Ray Spectroscopy N2 - The development of earth-abundant catalysts for selective electrochemical CO2 conversion is a central challenge. Cu-Sn bimetallic catalysts can yield selective CO2 reduction toward either CO or formate. This study presents oxide-derived Cu-Sn catalysts tunable for either product and seeks to understand the synergetic effects between Cu and Sn causing these selectivity trends. The materials undergo significant transformations under CO2 reduction conditions, and their dynamic bulk and surface structures are revealed by correlating observations from multiple methods—X-ray absorption spectroscopy for in situ study, and quasi in situ X-ray photoelectron spectroscopy for surface sensitivity. For both types of catalysts, Cu transforms to metallic Cu0 under reaction conditions. However, the Sn speciation and content differ significantly between the catalyst types: the CO-selective catalysts exhibit a surface Sn content of 13 at. % predominantly present as oxidized Sn, while the formate-selective catalysts display an Sn content of ≈70 at. % consisting of both metallic Sn0 and Sn oxide species. Density functional theory simulations suggest that Snδ+ sites weaken CO adsorption, thereby enhancing CO selectivity, while Sn0 sites hinder H adsorption and promote formate production. This study reveals the complex dependence of catalyst structure, composition, and speciation with electrochemical bias in bimetallic Cu catalysts. KW - Electrochemical CO2 conversion KW - Cu catalysts KW - X-ray absorption spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547116 DO - https://doi.org/10.1002/aenm.202103328 SN - 1614-6832 VL - 12 IS - 5 SP - 2103328 PB - Wiley-VCH GmbH AN - OPUS4-54711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Durlo Tambara, Luís Urbano A1 - Nikoonasab, Ali A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Gluth, Gregor T1 - Determination of the oxidation depths of ground granulated blast furnace slag-containing cement pastes using Mn K-edge X-ray absorption near-edge structure spectroscopy N2 - The redox potential of the pore solution of hardened cements containing ground granulated blast furnace slag (GGBFS) affects reinforcement corrosion and immobilization of radioactive waste. Here, Mn K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to determine the depth profile of the oxidation state of manganese in hardened GGBFS-containing cement pastes. Manganese was oxidized in the outer regions of some of the pastes, but the depth to which this occurred was not identical with the ‘blue-green/white color change front’, usually interpreted as indicating oxidation of sulfur species. For CEM III/B, the color change of the material was gradual and thus unsuitable for a precise determination of the oxidation depth, while for the alkali-activated slag, a distinct color change front was found, but full oxidation of manganese and sulfur had not occurred in the brighter region. Mn K-edge XANES spectroscopy is thus a more reliable method than the determination of the visual color change front to follow the ingress of the oxidation front. KW - Manganese KW - Oxidation KW - Sulfide KW - Alkali-activated materials KW - Redox conditions PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651469 DO - https://doi.org/10.1111/jace.70445 SN - 0002-7820 SN - 1551-2916 VL - 109 IS - 1 SP - 1 EP - 11 PB - Wiley CY - Oxford AN - OPUS4-65146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strub, Erik A1 - Plarre, Rüdiger A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Schoknecht, Ute A1 - Urban, Klaus A1 - Jüngel, P. T1 - Determination of Cr(VI) in wood specimen: A XANES study at the Cr K edge N2 - The content of chromium in different oxidation states in chromium-treated wood was studied with XANES (X-ray absorption near-edge structure) measurements at the Cr K absorption edge. It could be shown that wood samples treated with Cr(VI) (pine and beech) did still contain a measurable content of Cr(VI) after four weeks conditioning. If such wood samples were heat exposed for 2 h with 135 °C prior conditioning, Cr(VI) was no longer detected by XANES, indicating a complete reduction to chromium (III). KW - X-ray spectroscopy KW - XANES KW - XAS KW - XRF KW - Specifikation KW - Reduction PY - 2008 DO - https://doi.org/10.1016/j.nimb.2008.03.011 SN - 0168-583X SN - 1872-9584 VL - 266 IS - 10 SP - 2405 EP - 2407 PB - Elsevier CY - Amsterdam AN - OPUS4-17555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grengg, C. A1 - Gluth, Gregor A1 - Mittermayr, F. A1 - Ukrainczyk, N. A1 - Bertmer, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Leis, A. A1 - Dietzel, M. T1 - Deterioration mechanism of alkali-activated materials in sulfuric acid and the influence of Cu: A micro-to-nano structural, elemental and stable isotopic multi-proxy study N2 - In this study, a multi-proxy approach combining 29Si, 27Al and 1H MAS-NMR, FEG-EPMA, XANES at the Cu K-edge and XRD analytics with hydrochemical tools such as ICP-OES analyses, oxygen-isotope signatures, and thermodynamic modelling was applied to K-silicate-activated metakaolin specimens - with and without CuSO4·5H2O addition - exposed to sulfuric acid at pH = 2 for 35 days. The results revealed a multistage deterioration mechanism governed by (i) acid diffusion, (ii) leaching of K-A-S-H, (iii) microstructural damage related to precipitation of expansive (K,Ca,Al)-sulfate-hydrate phases (iv) complete dissolution of the K-A-S-H framework, (v) and formation of silica gel in the outermost corroded regions. Copper ions were mainly located in layered spertiniite-chrysocolla-like phases in the as-cured materials. The results demonstrate an overall negative effect of Cu addition on chemical material durability, implying that the reported higher durability of Cu-doped AAM in biocorrosion environments can be best explained by bacteriostatic effects. KW - Alkali-activated materials KW - Acid resistance KW - Microbially induced corrosion KW - MIC PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520567 DO - https://doi.org/10.1016/j.cemconres.2021.106373 SN - 0008-8846 VL - 142 SP - 1 EP - 15 PB - Elsevier CY - Oxford AN - OPUS4-52056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Detection of platinum in gold with D2XRF T2 - SR2A 2014 CY - Paris (Frankreich) DA - 2014-09-09 PY - 2014 AN - OPUS4-32369 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Decoding the Elemental Fingerprints of Ancient Gold: A Synchrotron-based Approach N2 - This contribution focuses on the application of synchrotron radiation X-ray fluorescence (SR XRF) for the analysis of ancient gold objects at the BAMline, showcasing several noteworthy examples. One prominent artifact is the Sky Disc of Nebra, which presented a relatively straightforward question to be addressed: Do the gold inlays belong together, and can we glean insights about their origin? In contrast, the analysis of the Bernstorf gold, an alleged Bronze Age treasure composed of exceptionally pure gold, posed a more intricate challenge. The debate surrounding its authenticity prompted an in-depth investigation utilizing SR XRF with different experimental conditions. This approach, involving the analysis of trace elements, played a pivotal role in elucidating the nature and age of the gold, offering valuable insights into its production Platinum emerges as a crucial trace element for gold analysis, given its typically low concentration in gold artifacts, often in the range of a few parts per million (ppm). Accurately measuring Platinum in the presence of overlapping emission lines from gold is arduous. To overcome this challenge, BAMline developed a wavelength dispersive set-up known as D2XRF, employing a pixelated energy-dispersive X-ray detector (pnCCD). This innovative approach enables the resolution of overlapping emission lines, leading to a remarkable detection limit of 1 ppm for Platinum in gold samples. Furthermore, the application of the pnCCD for imaging element distributions on a Phoenician ivory artifact will be showcased. This technique allows for the visualization and mapping of various elements, which opens the possibility to reconstruct the original appearance. The comprehensive analysis of ancient gold artifacts at BAMline has provided valuable insights into the craftsmanship, trade, and technological advancements of ancient civilizations. By unraveling the complex stories these artifacts carry, our studies contributed significantly to the fields of archaeology, history, and materials science. It underscores the importance of interdisciplinary approaches in piecing together the puzzle of human history, revealing the interconnectedness of cultures through the lens of non-destructive analysis. T2 - Denver X-ray Conference 2024 CY - Denver, CO, USA DA - 04.08.2024 KW - Gold KW - Synchrotron KW - XRF KW - BAMline PY - 2024 AN - OPUS4-61701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -