TY - JOUR A1 - Kulow, Anicó A1 - Witte, S. A1 - Beyer, S. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, H. A1 - Streli, C. T1 - A new experimental setup for time- and laterally-resolved X-ray absorption fine structure spectroscopy in a 'single shot' JF - Journal of Analytical Atomic Spectrometry N2 - In this work, a new setup for dispersive XAFS measurements is presented. This reproducible and scanningfree setup yields both time- and laterally-resolved XAFS experiments in a ‘single-shot’. It allows a straightforward adjustment for probing different elements covering many relevant applications in materials science. An incoming energetic broadband beam is diffracted by a Si (111) crystal after passing through the sample and collected by an area sensitive detector. Depending on the energy range of the incoming beam, XANES and/or EXAFS spectra can be recorded with a time resolution down to 1 s. The feasibility of this setup was demonstrated at the BAMline at BESSY II (Berlin, Germany) with reference Fe and Cu foils and the results are hereby presented and discussed. Additionally, an application where time resolution on the second scale is required is briefly evaluated. The presented example concerns studying early stages of zinc(II)2-methylimidazolate (ZIF-8) crystallization. This is particularly important for biomedical applications. KW - X-ray spectroscopy KW - X-ray absorption fine structure KW - Time-resolved KW - Laterally-resolved KW - Experimental setup PY - 2019 DO - https://doi.org/10.1039/c8ja00313k SN - 0267-9477 SN - 1364-5544 VL - 34 IS - 1 SP - 239 EP - 246 PB - Royal Society of Chemistry CY - London AN - OPUS4-47207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Stephan-Scherb, Christiane T1 - A µ‐XANES study of the combined oxidation/sulfidation of Fe–Cr model alloys JF - Materials and Corrosion N2 - The precise analysis of cation diffusion profiles through corrosion scales is an important aspect to evaluate corrosion phenomena under multicomponent chemical load, as during high‐temperature corrosion under deposits and salts. The present study shows a comprehensive analysis of cation diffusion profiles by electron microprobe analysis and microbeam X‐ray absorption near edge structure (µ‐XANES) spectroscopy in mixed oxide/sulfide scales grown on Fe–Cr model alloys after exposing them to 0.5% SO2. The results presented here correspond to depth‐dependent phase identification of oxides and sulfides in the corrosion scales by µ‐XANES and the description of oxidation‐state‐dependent diffusion profiles. Scales grown on low‐ and high‐alloyed materials show both a well‐pronounced diffusion profile with a high concentration of Fe3+ at the gas and a high concentration of Fe2+ at the alloy interface. The distribution of the cations within a close‐packed oxide lattice is strongly influencing the lattice diffusion phenomena due to their different oxidation states and therefore different crystal‐field preference energies. This issue is discussed based on the results obtained by µ‐XANES analysis. KW - X-ray absorption spectroscopy KW - Oxidation KW - Sulfidation PY - 2019 DO - https://doi.org/10.1002/maco.201810644 VL - 70 IS - 8 SP - 1360 EP - 1370 PB - Wiley VCH-Verlag AN - OPUS4-47934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Michael A1 - Buzanich, Günter A1 - Jähn, Katharina A1 - Reinholz, Uwe A1 - Radtke, Martin T1 - Analysis of cobalt deposition in periprosthetic bone specimens by high-resolution synchroton XRF in undecalcified histological thin sections JF - Materialia N2 - Increasing numbers of implant revisions are a current clinical issue. Interactions of the endoprosthesis biomaterial with the body affect implantation time by wear processes, i.e. corrosion and abrasion. Previously, cobalt-chrome implants were shown to cause high levels of cobalt ions being deposited in the bone matrix. To determine a poten- tial functional role of these ions on bone homeostasis, we have developed a non-destructive dual analysis of highly sensitive elemental analysis by synchrotron XRF directly in undecalcified histological bone thin sections (4 μm). In this study, samples from 28 bone samples from hip endoprosthesis carriers (Surface Replacement Arthroplasty, metal-on-metal bearing) with an implant lifetime of 17–1750 days were used. Results were compared to age- matched control specimens. The histological analysis identified areas of bone cell activity and assigned them for XRF measurements. Co-Cr wear particles were identified in the bone marrow. In addition, Co ions were highly enriched in the mineralized bone matrix. The cobalt deposits were not homogeneously distributed, and areas of high signal intensity were identified. Co was distinctly deposited in the newly formed osteoid layer, but also within deeper layers of the bone matrix, whereby the Co concentration increased with higher degrees of bone matrix mineralization. In the current study, we determined cobalt accumulations in the bone matrix and showed for the first time via synchrotron XRF with a high spatial resolution direct on histological slides, that cobalt deposits in the mineralized bone matrix in a mineral-specific way that is dependent upon the implant lifetime. KW - Implant material KW - Cobalt deposition KW - Bone matrix KW - High-resolution synchrotron XRF KW - Histology PY - 2019 DO - https://doi.org/10.1016/j.mtla.2019.100290 SN - 2589-1529 VL - 6 SP - 100290, 1 EP - 8 PB - Elsevier Inc. CY - Amsterdam, Niederlande AN - OPUS4-47620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manso, M. A1 - Pessanha, S. A1 - Guerra, M. A1 - Reinholz, Uwe A1 - Afonso, C. A1 - Radtke, Martin A1 - Lourenco, H. A1 - Carvalho, M. L. A1 - de Oliveira Guilherme Buzanich, Ana T1 - Assessment of Toxic Metals and Hazardous Substances in Tattoo Inks Using Sy-XRF, AAS, and Raman Spectroscopy JF - Biological Trace Element Research N2 - Synchrotron radiation X-ray fluorescence spectroscopy, in conjunction with atomic absorption and Raman spectroscopy, was used to analyze a set of top brand tattoo inks to investigate the presence of toxic elements and hazardous substances. The Cr, Cu, and Pb contents were found to be above the maximum allowed levels established by the Council of Europe through the resolution ResAP(2008)1 on requirements and criteria for the safety of tattoos and permanent makeup. Raman analysis has revealed the presence of a set of prohibited substances mentioned in ResAP(2008)1, among which are the pigments Blue 15, Green 7, and Violet 23. Other pigments that were identified in white, black, red, and yellow inks are the Pigment White 6, Carbon Black, Pigment Red 8, and a diazo yellow, respectively. The present results show the importance of regulating tattoo ink composition. KW - Synchrotron KW - Tattoo inks KW - XRF KW - Toxic metals KW - Hazardous substances PY - 2019 DO - https://doi.org/10.1007/s12011-018-1406-y VL - 187 IS - 2 SP - 596 EP - 601 PB - Springer AN - OPUS4-47369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fittschen, U.E.A. A1 - Möckel, R. A1 - Schreiner, M. A1 - klinger, M. A1 - Radtke, Martin A1 - Meyer, B. A1 - Guhl, S. A1 - Renno, A. A1 - Godinho, J. A1 - Gloaguen, R. A1 - Gutzmer, J. T1 - Bundling analytical capacities to understand phase formation in recycling of functional materials JF - Materials Science Forum N2 - Transitioning from combustion engine-driven transportation to e-mobility demands a paradigm shift – from a system geared to maximize energy efficiency (i.e. fuel consumption) to a system that may be constrained by the availability of high technology (critical) metals required for electrical energy storage systems and drives. In the wake of these developments efforts in securing new resources of these metals from recycling of end-of-life products are increasing steadily. Recycling of Li-Ion batteries has recently been evaluated. The results pinpoint to a critical need for understanding slag Formation and its dependence on metal components like Mn under extreme conditions. This will allow researchers to predict optimal Operation setting and to react quickly to changing market demands (which may be Li or Co at one point but may also shift to Ni or rare earth elements (REE)). The long-term goal is to control the formation of specific phases in slags allowing for a Maximum yield of elements of interest and optimal recovery in the separation processes that follows. The combination of data on the physical micro structure and local chemistry of the multi-Phase products during and after processing will help to understand and derive thermodynamic and kinetic data on its formation. In this paper we are giving an overview on the analytical challenges and approaches to provide robust data on local element concentration and species (especially Mn which is a common component of next generation Li-ion batteries cathodes), spanning the dimensions from the nanometer scale to the bulk material. The complementary interactions of X-rays and electrons make them ideal probes to collect Interface and “in-depth” information. Before- and -after studies as well as in situ structural changes and Phase (trans)formation, changes in elemental and elemental species (e.g. oxidation state) distribution may be tracked by X-ray diffraction (XRD), X-ray fluorescence microscopy and X-ray Absorption spectroscopy. The application of such advanced analytical tools will not only provide essential clues during early lab-based experiments towards the development of new recycling technologies, but may also be deployed for on-line and in-line monitoring of industrial processes. KW - Synchrotron KW - XANES KW - Slags KW - Battery PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/MSF.959.183 SN - 1662-9752 VL - 959 SP - 183 EP - 190 PB - Trans Tech Publ. AN - OPUS4-48900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - De Samber, B. A1 - Scharf, Oliver A1 - Buzanich, Günter A1 - Garrevoet, J. A1 - Tack, P. A1 - Radtke, Martin A1 - Riesemeier, Heinrich A1 - Reinholz, Uwe A1 - Evens, R. A1 - De Schamphelaere, K. A1 - Falkenberg, G. A1 - Janssen, C. A1 - Vincze, L. T1 - Three-dimensional X-ray fluorescence imaging modes for biological specimens using a full-field energy dispersive CCD camera JF - Journal of analytical atomic spectrometry N2 - Besides conventional scanning X-ray fluorescence imaging at synchrotron sources, full-field X-ray fluorescence (FF-XRF) imaging techniques that do not implicitly require spatial scanning of the sample have become available. FF-XRF has become achievable thanks to the development of a new type of energy dispersive CCD-based 2D detector, also referred to as a 'color X-ray camera (CXC)' or 'SLcam'. We report on different imaging schemes for biological samples using FF-XRF imaging: (a) 2D 'zoom' imaging with pinhole optics using the 'camera obscura' principle; (b) 2D 'fixed magnification' imaging using magnifying polycapillary optics; and (c) 3D-FF-XRF imaging using an X-ray sheet beam or computed tomography (CT). The different FF-XRF imaging modes are illustrated using the crustacean Daphnia magna, a model organism for investigating the effects of metals on organism/ecosystem health, and foraminifera, a class of amoeboid protist. Detailed analytical characterization of the set-up is performed through analyzing various reference materials in order to determine limits of detection (LODs) and sensitivities. Experiments were performed using the BAMline at the BESSY synchrotron (Berlin, Germany) and using the P06 Hard X-ray Microprobe at the PETRAIII synchrotron (Hamburg, Germany). KW - CXC KW - BAMline KW - Maia detector KW - Synchrotron PY - 2019 DO - https://doi.org/10.1039/c9ja00198k VL - 34 IS - 10 SP - 2083 EP - 2093 PB - Royal Society of Chemistry CY - Cambridge, United Kingdom AN - OPUS4-49359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -