TY - JOUR A1 - Eisenacher, Germar A1 - Scheidemann, Robert A1 - Neumann, Martin A1 - Droste, Bernhard A1 - Völzke, Holger T1 - Dynamic crushing characteristics of spruce wood under large deformations N2 - An extensive series of large deformation crushing tests with spruce wood specimens was conducted. Material orientation, lateral constraint and loading rate were varied. Regarding material orientation, a reduction in the softening effect and the general force level was observed with a higher fiber-load angle. A comparison with characteristics gained by application of Hankinson's formula showed discrepancies in compression strength and the beginning of the hardening effect. Lateral constraint of the specimens caused a multiaxial stress state in the specimens, which was quantified with the applied measuring method. Further, a higher force level compared to specimens without lateral constraint and significant hardening effect at large deformations resulted. Thus, the influence of a multiaxial stress state on the force level could be determined. An increase in the loading rate led to higher force levels at any displacement value and material orientation. KW - Crushing test KW - Dynamic crushing characteristics KW - Spruce wood KW - Lateral constraint KW - Multiaxial stress state KW - Hankinson's formula PY - 2013 DO - https://doi.org/10.1007/s00226-012-0508-5 SN - 0043-7719 SN - 1432-5225 VL - 47 IS - 2 SP - 369 EP - 380 PB - Springer CY - Berlin AN - OPUS4-27743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar A1 - Scheidemann, Robert A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Crushing characteristics of spruce wood used in impact limiters of type B packages T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 2013-08-18 KW - Spruce wood KW - Crush test KW - Impact limiter PY - 2013 SP - 1 EP - 10(?) PB - Omnipress AN - OPUS4-30219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Wille, Frank A1 - Linnemann, Konrad A1 - Schubert, Sven A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Droste, Bernhard T1 - Reflection on BAM mechanical design assessment of TN®24E spent fuel transport package N2 - TN®24 E, a new package design, was developed and applied for by Areva TN for German transport approval certificate. The certificate was issued by BfS, Federal Office for Radiation Protection, on 24th of July 2013. The package is designed as a dual purpose cask for transport and storage of up to 21 PWR spent fuel assemblies from German NPPs. BAM is the German competent authority responsible for the design assessment of RAM packages regarding mechanical and thermal safety cases, activity release analysis and all issues of quality assurance during manufacturing and operation of packages. Certain assessment experiences as well as new developments resulting from the BAM TN®24E approval procedure are presented. The mechanical safety case of the TN®24E is based mainly on finite element calculations, which were verified by the TN®81 1/3 scale drop test program performed at BAM. Thermal analyses rely upon calculations, while the activity release criterion is based upon leakage rate results of TN®81 drop tests. The BAM-GGR 012 guideline for the analysis of bolted lid and trunnion systems has been fully implemented. Due to requirements by BAM, AREVA TN developed a new assessment strategy for fracture mechanical evaluation of welding seams. The material qualification and documentation is also an important aspect of BAM assessment; the qualification of borated aluminum basket material, the determination of strength values for thermal aged hardened aluminum alloys for the basket or consideration of high burn-up fuel assemblies are remarkable issues in this context. In addition, the consideration of the material compatibility, especially taking into account a transport after 40 years of dry interim storage in German facilities, has gained significant importance in the licensing process of the TN®24E. Next to obvious mechanical issues such as the assessment of shell ovalization under 9 m drop test scenario and its impact on basket load, thermo-mechanical interactions had to be addressed in the safety case. Due to BAM requirements, AREVA TN performed a full thermo-mechanical analysis of the cask behavior under fire test conditions. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Transport KW - RAM KW - Radioactive material cask KW - Nuclear fuel PY - 2013 SP - 1 EP - 12 PB - Omnipress AN - OPUS4-30270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Günther, U. A1 - Ballheimer, Viktor A1 - Linnemann, Konrad A1 - Wille, Frank A1 - Droste, Bernhard T1 - Experiences by German authority with safety case approach for welding seams as part of SNF transport package containments N2 - Federal Institute for Materials Research and Testing (BAM) is the responsible authority for the assessment of mechanical and thermal safety as well as quality issues within the licensing procedure for transport casks for radioactive materials. The assessment includes a brittle fracture analysis of all relevant cask components. For cask bodies where a steel bottom is welded to a steel shell, specimens for testing of sufficient fracture resistance can normally not be extracted directly from the welding seam area of the cask. Therefore, a methodology has to be developed to ensure compliance with the safety analysis considerations and the approved design specification. This paper describes such a methodology including brittle fracture analysis and de-termination of required material properties as well as aspects of quality assurance during manufacturing. T2 - RAMTRANSPORT 2012 - 9th International Conference on the Radioactive Materials Transport and Storage CY - London, UK DA - 2012-05-22 PY - 2012 IS - Session 4.2 RAM 18 SP - 1 EP - 6 AN - OPUS4-26344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Neumann, Martin A1 - Sterthaus, Jens A1 - Nitz, Thilo A1 - Wille, Frank T1 - Moisture content of wood - influence on mechanical behavior of wood filled impact limiter and importance for quality surveillance during manufacturing N2 - The moisture content of wood is known to have a significant influence on the wood’s mechanical properties. Using wood as an energy absorber in impact limiter of packages for the transport of radioactive material, it is of particu-lar importance to ensure the moisture content and thus relevant mechanical properties to be in specified limits. The paper surveys the influence of wood moisture content on the mechanical properties of wood. Different measuring methods are discussed with respect to in-situ applicability, accuracy and effort. The results of an experimental ana-lysis of the accuracy of hand-held moisture meters using the electrical resistance method are discussed. Conclu-sions are drawn regarding the measurement of moisture content of wood upon delivery as well as of complete im-pact limiter assemblies. Requirements for quality surveillance during manufacturing of wood filled impact limiter are derived and it is exemplified how to meet them. Construction, manufacturing and inspection of impact limiter encapsulation with regard to leak-tightness are addressed. T2 - RAMTRANSPORT 2012 - 9th International Conference on the Radioactive Materials Transport and Storage CY - London, UK DA - 2012-05-22 KW - Mechanical behavior of wood KW - Moisture content KW - Impact limiter PY - 2012 IS - 4.4 RAM 30 SP - 1 EP - 11 AN - OPUS4-26241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Schubert, Sven A1 - Eisenacher, Germar A1 - Wille, Frank T1 - Material characterization and modeling within safety analysis of packages for transport of radioactive material T2 - ASME 2012 Pressure vessels & piping division conference CY - Toronto, Ontario, Canada DA - 2012-07-15 PY - 2012 SP - PVP2012-78297, 1-6 PB - American Society of Mechanical Engineers CY - New York AN - OPUS4-26271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisenacher, Germar A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Neumann, Martin A1 - Sterthaus, Jens A1 - Nitz, Thilo A1 - Wille, Frank T1 - Moisture content of wood: influence on mechanical behaviour of wood filled impact limiters and importance for quality surveillance during manufacturing N2 - The moisture content of wood is known to have a significant influence on the wood's mechanical properties. Using wood as an energy absorber in impact limiters of packages for the transport of radioactive material, it is of particular importance to ensure the moisture content and thus relevant mechanical properties to be in specified limits. The paper surveys the influence of wood moisture content on the mechanical properties of wood. Different measuring methods are discussed with respect to in situ applicability, accuracy and effort. The results of an experimental analysis of the accuracy of hand held moisture metres using the electrical resistance method are discussed. Conclusions are drawn regarding the measurement of moisture content of wood upon delivery as well as of complete impact limiter assemblies. Requirements for quality surveillance during manufacturing of wood filled impact limiters are derived and it is exemplified how to meet them. Construction, manufacturing and inspection of impact limiter encapsulation with regard to leak tightness are addressed. KW - Electrical resistance method KW - Impact limiter KW - Moisture content KW - Moisture metre KW - Wood PY - 2012 DO - https://doi.org/10.1179/1746510913Y.0000000023 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 23 IS - 3-4 SP - 179 EP - 185 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-29243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dreßler, Martin A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Saliwan Neumann, Romeo T1 - Diffusion of Cr, Fe, and Ti ions from Ni-base alloy inconel-718 into a transition alumina coating N2 - Heat treating metals at high temperatures trigger diffusion processes which may lead to the formation of oxide layers. In this work the diffusion of Cr, Fe and Ti into an alumina coating applied to Inconel-718 is being investigated. Mass gain measurements, UV–vis spectroscopy and transmission electron microscopy were applied in order to study the evolution of the diffusion process. It was found that mainly Cr as well as minor amounts of Fe and Ti are being incorporated into the alumina coating upon prolonged heat treatment at 700 °C. It could be shown that alumina coatings being void of Cr have the same oxidation related mass gain as uncoated samples. However, incorporation of Cr into the alumina coating decreased their mass gain below that of uncoated substrates forming a Cr oxide scale only. KW - Diffusion KW - UV–vis spectroscopy KW - Transmission electron microscopy KW - Alumina coatings KW - Sol-gel deposition PY - 2012 DO - https://doi.org/10.1016/j.tsf.2012.02.006 SN - 0040-6090 VL - 520 IS - 13 SP - 4344 EP - 4349 PB - Elsevier CY - Amsterdam AN - OPUS4-25830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar A1 - Scheidemann, Robert A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Approach for a finite element material model for wood for application in mechanical safety cases of transport packages N2 - BAM Federal Institute for Materials Research and Testing is the competent authority for mechanical safety assessment of transport packages for radioactive material in Germany. The further development of state-of-the-art technology concerning assessment methods is essential for a qualified work of involved designers and authority experts. The paper gives an example of current development done to improve understanding and modeling capabilities of wood filled impact limiter. In order to reduce the loads applied to the package containment, which result from regulatory drop tests, most packages are protected by energy dissipating impact limiter. Wood, encapsulated by steel sheets, is one of the materials typically used for energy dissipation in these impact limiter. Very often, mechanical safety cases regarding the 9 m drop test are performed computationally, where it is essential to use reliable and verified computational methods and models. In this context, the paper presents an approach for a finite element material model for wood. Thereby, the mechanical behavior of wood under compression loading is the focus of the development work. Additionally, material orientation as well as strain rate, temperature and lateral constraint may vary. A large number of experiments, particularly compression tests, was designed and performed to establish an adequate experimental database for modeling verification. The experimental results enabled the derivation of necessary requirements: The material model has to take into account strain rate and temperature dependencies as well as the anisotropic characteristics of the material, a proper yield criterion, flow rule and hardening law. Such a material model is currently not available in established commercial dynamic finite element codes. Thus it is necessary to create a user-defined material model considering the mentioned requirements. A first step was done by determining a yield surface as well as detecting flow and hardening mechanisms from experimental force-deflection curves. In a next step the LS-DYNA material model MAT_75 was altered according to conclusions of former BAM development work, regarding the modeling of post-peak softening as a function of lateral constraint. Future research will contain the further development, implementation and verification of a material model for wood. T2 - 52nd INMM Annual meeting CY - Palm Desert, CA, USA DA - 17.07.2011 KW - Impact limiter KW - Material model wood KW - Transport package PY - 2011 SP - 1 EP - 8 AN - OPUS4-24236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dreßler, Martin A1 - Dombrowski, Felix A1 - Simon, Ulla A1 - Börnstein, Julian A1 - Hodoroaba, Vasile-Dan A1 - Feigl, Michael A1 - Grunow, Sabrina A1 - Gildenhaar, Renate A1 - Neumann, Martin T1 - Influence of gelatine coatings on compressive strength of porous hydroxyapatite ceramics N2 - Porous ceramics prepared by the foam replication technique have a high porosity and low mechanical stability. It has been reported that coating such porous ceramics with gelatin allows for an improved compressive strength. Little details regarding the influence of important gelatin parameters such as concentration, temperature and drying conditions as well as bloom number which is a measure of the gel rigidity, on this toughening effect are available. This paper investigates the influence of these parameters on compressive strength of gelatin coated porous hydroxyapatite ceramics. It was found that concentration in the gelatin sols has a marked impact whereas sol temperature, bloom number and differing conditions during subsequent drying have only little influence on the compressive strength of the coated ceramics. KW - Films KW - Composites KW - Strength KW - Apatite KW - Biomedical application PY - 2011 DO - https://doi.org/10.1016/j.jeurceramsoc.2010.11.004 SN - 0955-2219 SN - 1873-619X VL - 31 IS - 4 SP - 523 EP - 529 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-23216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -