TY - CONF A1 - Neumann, Martin A1 - Eisenacher, Germar A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Development of a material model for the crush of spruce wood N2 - Typical transport packages used in Germany are equipped with wooden impact limiting devices. In this paper we give an overview of the latest status regarding the development of a finite element material model for the crush of spruce wood. Although the crush of wood – mainly in longitudinal direction – is a phenomenon governed by macroscopic fracture and failure of wood fibres we smear fracture and failure mechanisms over the continuous voume. In first step we altered an existing LS-DYNA material model for foams, which considers an ellipse shaped yield surface written in terms of the first two stress invariants. The evolution of the yield surface in the existing model depends on the volumetric strain only. For the use with spruce wood, we modified the existing material model to consider the deviatoric strain for the evolution of the yield surface as well. This is in accordance with the results of crush tests with spruce wood specimens, where the crushing deformation was rather deviatoric for uniaxial stress states and rather volumetric for multiaxial stress states We rate the basic idea of this approach to be reasonable, though other problems exist regarding the shape of the yield surface and the assumption of isotropic material properties. Therefore we developed a new transversal isotropic material model with two main directions, which considers different yield curves according to the multiaxiality of the stress state via a multi-surface yield criterion and a non-associated flow rule. The results show the ability to reproduce the basic strength characteristics of spruce wood. Nevertheless, problems with regularization etc. show that additional investigations are necessary. T2 - ASME PVP 2017 CY - Waikaloa, HY, USA DA - 16.07.2017 KW - Chrush KW - Spruce KW - Wood KW - FEM PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A037, 1 EP - 9 AN - OPUS4-41613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Eisenacher, Germar A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Development of a material model for the crush of spruce wood N2 - Typical transport packages used in Germany are equipped with wooden impact limiting devices. In this paper we give an overview of the latest status regarding the development of a finite element material model for the crush of spruce wood. Although the crush of wood – mainly in longitudinal direction – is a phenomenon governed by macroscopic fracture and failure of wood fibres we smear fracture and failure mechanisms over the continuous voume. In first step we altered an existing LS-DYNA material model for foams, which considers an ellipse shaped yield surface written in terms of the first two stress invariants. The evolution of the yield surface in the existing model depends on the volumetric strain only. For the use with spruce wood, we modified the existing material model to consider the deviatoric strain for the evolution of the yield surface as well. This is in accordance with the results of crush tests with spruce wood specimens, where the crushing deformation was rather deviatoric for uniaxial stress states and rather volumetric for multiaxial stress states We rate the basic idea of this approach to be reasonable, though other problems exist regarding the shape of the yield surface and the assumption of isotropic material properties. Therefore we developed a new transversal isotropic material model with two main directions, which considers different yield curves according to the multiaxiality of the stress state via a multi-surface yield criterion and a non-associated flow rule. The results show the ability to reproduce the basic strength characteristics of spruce wood. Nevertheless, problems with regularization etc. show that additional investigations are necessary. T2 - ASME PVP 2017 CY - Waikaloa, HY, USA DA - 16.07.2017 KW - Crush KW - Wood KW - Spruce KW - FEM PY - 2017 AN - OPUS4-41617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Storm, Sven-Uwe A1 - Rudolph, Michael A1 - Schoppa, André A1 - Szczepaniak, Mariusz T1 - Mobile gas cylinders in fire: Consequences in case of failure N2 - Commercial, off-the shelf propane cylinders are subjected to high safety regulations. Furthermore, those cylinders are equipped with safety devices like pressure relief valves (PRV). Despite these regulations and safety measures, a failure of the Container is possible if exposed to an intense fire. The result of this is severe hazard for users, rescue forces and infrastructure. Within the framework of a destructive test series, 15 identical propane cylinders, without pressure relief devices, were exposed to an intensive fire in horizontal Position until failure. Each cylinder was filled with a mass of m =11 kg of liquid propane. Three different fire sources were used (wood, petrol, propane). The experiments revealed the failure of all cylinders in a time period t < 155 s. The failure lead to a fragmentation into several major parts with throwing distances of up to l =262 m. In all trials, the temperature of the cylinder wall (top, side, bottom), of the liquid phase inside and of the surrounding fire (top, side, bottom) was recorded. In addition, the inner cylinder pressure and the induced overpressure of the blast wave after the failure were recorded. Overpressures of up to p=0.27 bar were recorded close to the cylinder (l =5 m). AM tests were documented hy video from several positions (general view, close-up, high-speed 5000 fps). This test series creates the basis for further experimental studies in the field of alternative fuels for vehicles. The aim of this test series is to assess and analyse the consequences of the failure of gas vessels (for LPG, CNG, CGH2) in the aftermath of severe incidents. T2 - 12th International Symposium on Fire Safety Science CY - Lund, Sweden DA - 12.06.2017 KW - Explosion KW - Gas cylinders KW - Consequences PY - 2017 DO - https://doi.org/X0.1016/j.firesaf.2017.05.006 SN - 0379-7112 VL - 91 SP - 989 EP - 996 PB - Elsevier Ltd. AN - OPUS4-43028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Storm, Sven-Uwe A1 - Rudolph, Michael A1 - Schoppa, André A1 - Sczepaniak, Mariusz T1 - Mobile gas cylinders in fire: Consequences in case of failure N2 - Commercial, off-the shelf propane cylinders are subjected to high safety regulations. Furthermore, those cylinders are equipped with safety devices like pressure relief valves (PRV). Despite these regulations and safety measures, a failure of the container is possible if exposed to an intense fire. The result of this is severe hazard for users, rescue forces and infrastructure. Within the framework of a destructive test series, 15 identical propane cylinders, without pressure relief devices, were exposed to an intensive fire in horizontal position until failure. Each cylinder was filled with a mass of m =11 kg of liquid propane. Three different fire sources were used (wood, petrol, propane). The experiments revealed the failure of all cylinders in a time period t < 155 s. The failure lead to a fragmentation into several major parts with throwing distances of up to l =262 m. In all trials, the temperature of the cylinder wall (top, side, bottom), of the liquid phase inside and of the surrounding fire (top, side, bottom) was recorded. In addition, the inner cylinder pressure and the induced overpressure of the blast wave after the failure were recorded. Overpressures of up to p=0.27 bar were recorded close to the cylinder (l =5 m). All tests were documented by video from several positions (general view, close-up, high-speed 5000 fps). This test series creates the basis for further experimental studies in the field of alternative fuels for vehicles. The aim of this test series is to assess and analyse the consequences of the failure of gas vessels (for LPG, CNG, CGH2) in the aftermath of severe incidents. KW - Explosion KW - Gas cylinders KW - Consequences PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S037971121730098X DO - https://doi.org/10.1016/j.firesaf.2017.05.006 SN - 0379-7112 SN - 1873-7226 VL - 91 SP - 989 EP - 996 PB - Elsevier AN - OPUS4-40550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Rudolph, Michael A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Schalau, Bernd A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz A1 - Mair, Georg T1 - Infrared radiation measurement at failure of mobile gas vessels N2 - 15 identical off-the-shelf propane cylinders (m = 11 kg liquid propane) were underfired. The infrared Radiation of the Explosion, that occurred in the aftermath of the vessel failure, was recorded using four bolometers. These measurements are compared with an estimation of the Maximum intensity gained by an Analysis of the Video data, an Extended Version of the Stefan-Boltzmann law and a BLEVE model. T2 - 26th International Colloquium on the Dynamics of Explosions and Reactive Systems CY - Boston, USA DA - 30.07.2017 KW - Failure of gas vessels KW - Propane cylinder KW - Gas explosion KW - Consequences KW - Infrared radiation PY - 2017 SP - 1 EP - 6 PB - FM Global CY - Seattle, USA AN - OPUS4-41993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Introduction of BAM safety assessment experience feedback list N2 - BAM as competent authority regarding assessment of mechanical and thermal design, activity release and quality assurance aspects of SNF and HLW transport packages developed a thesaurus of experience feedback topics from recent approval procedures. The list is structured according to the European PDSR guide. It involves issues, which from BAM point of view, needed clarification during last package design assessment procedures. The list contains issues from operation (e.g. deactivation of handling lugs not intended for package handling), maintenance (e.g. leak tightness of impact limiting devices) to technical assessment (e.g. formation of hydrogen by radiolysis and its impact on pressure and ignitability, consideration of ageing mechanisms, thermo-mechanical assessment, impact of gaps between content and flask, spent fuel behaviour) as well as to general and specific safety analysis report requirements (e.g. report structure and required data). T2 - PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - Experience feedback list KW - Radioactive material KW - Transport PY - 2016 UR - http://www.patram2016.org/ SP - Paper 4002, 1 AN - OPUS4-37850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Introduction of BAM safety assessment experience feedback list N2 - BAM as competent authority regarding assessment of mechanical and thermal design, activity release and quality assurance aspects of SNF and HLW transport packages developed a thesaurus of experience feedback topics from recent approval procedures. The list is structured according to the European PDSR guide. It involves issues, which from BAM point of view, needed clarification during last package design assessment procedures. The list contains issues from operation (e.g. deactivation of handling lugs not intended for package handling), maintenance (e.g. leak tightness of impact limiting devices) to technical assessment (e.g. formation of hydrogen by radiolysis and its impact on pressure and ignitability, consideration of ageing mechanisms, thermo-mechanical assessment, impact of gaps between content and flask, spent fuel behaviour) as well as to general and specific safety analysis report requirements (e.g. report structure and required data). T2 - PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - Experience feedback list KW - Radioactive material KW - Transport PY - 2016 AN - OPUS4-37852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard A1 - Feldkamp, Martin A1 - Linnemann, Konrad T1 - Experience feedback from BAM safety assessment of transport packages N2 - In order to facilitate approval procedures and reduce effort BAM has filed a list of recently encountered issues during different approval procedures. This presentation shows different examples from the list, which are structured according to the PDSR guide. T2 - RAM Tage CY - Berlin, Germany DA - 16.03.2016 KW - Experience feedback list KW - Radioactive material PY - 2016 AN - OPUS4-37848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Experience feedback from BAM safety assessment of transport packages N2 - BAM as competent authority regarding assessment of mechanical and thermal design, activity release and quality assurance measures of Type-B(U) transport packages developed a thesaurus of experience feedback topics from recent assessment procedures. The list is structured according to the European PDSR guide. It involves issues, which from BAM's point of view, needed clarification during the last package design assessment procedures. The list contains issues from Operation (e.g. deactivation of handling lugs not intended for package handling), maintenance (e.g. leak tightness of impact limiting devices) to technical assessment (e.g. formation of hydrogen by radiolysis and its impact on pressure and ignitability, consideration of ageing mechanisms, thermo-mechanical assessment, impact of gaps between content and flask) as well as to general and specific safety analysis report requirements (e.g. report structure and required data). T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Transport KW - RAM KW - Radioactive material KW - Cask KW - Flask KW - Nuclear fuel PY - 2015 SP - 1 EP - 7 AN - OPUS4-33420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar A1 - Wille, Frank A1 - Droste, Bernhard A1 - Neumann, Martin T1 - Modeling of wood filled impact limiters for transport packages - 14111 N2 - Packages for the transport of SNF and HLW are usually equipped with impact limiters to reduce the loads that result from the regulatory 9 m drop test. A common impact limiter design in Germany is a welded steel sheet structure filled with wood. The material wood is the main energy absorber, while the steel sheet provides the integrity of the impact limiter. The IAEA allows mechanical safety cases of transport packages to be carried out computationally, as long as the models used are reliable. In this context, a Finite Element (FE) modeling approach for wood and its application to impact limiters in the calculation of a 9 m drop test is presented. A user material model for wood was developed for the dynamic FE-Code LS-DYNA. Its features are based on a series of crush tests with spruce wood specimens. The model considers wood as a material with transversely isotropic properties, i.e. in the directions parallel and perpendicular to the fiber. The plastic material behavior depends on the state of stress. This has shown to be important to account for the lateral constraint of wood in impact limiters resulting from steel sheet encapsulation. Lateral constraint or respectively, a multiaxial stress state, increases the compression strength level of wood, limits the softening effect and increases the hardening effect. Lateral constraint also increases volumetric and reduces deviatoric deformation. The wood material model considers various hardening and softening characteristics via input flow curves. It considers effects of temperature and strain rate on strength as well. The development of a multi-surface yield criterion and a plastic potential that enables the user input of plastic Poisson's ratios were the challenges during the development of material model. A dynamic FE calculation of a horizontal drop test with an 18,000 kg test package was performed. The wood material model was used to model the wooden impact limiter inlays. The impact limiter deformation and the package deceleration were compared to the experimental drop test results to rate the performance of the wood material model. T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 02.03.2014 KW - Transport package KW - Radioactive material KW - Spruce wood KW - Impact limiter KW - Material model KW - Finite element PY - 2014 SN - 978-0-9836186-3-8 SP - 1 EP - 10 AN - OPUS4-30653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -