TY - CONF A1 - Neumann, Martin A1 - Wille, Frank A1 - Linnemann, Konrad A1 - Schubert, Sven A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Droste, Bernhard T1 - Reflection on BAM mechanical design assessment of TN®24E spent fuel transport package N2 - TN®24 E, a new package design, was developed and applied for by Areva TN for German transport approval certificate. The certificate was issued by BfS, Federal Office for Radiation Protection, on 24th of July 2013. The package is designed as a dual purpose cask for transport and storage of up to 21 PWR spent fuel assemblies from German NPPs. BAM is the German competent authority responsible for the design assessment of RAM packages regarding mechanical and thermal safety cases, activity release analysis and all issues of quality assurance during manufacturing and operation of packages. Certain assessment experiences as well as new developments resulting from the BAM TN®24E approval procedure are presented. The mechanical safety case of the TN®24E is based mainly on finite element calculations, which were verified by the TN®81 1/3 scale drop test program performed at BAM. Thermal analyses rely upon calculations, while the activity release criterion is based upon leakage rate results of TN®81 drop tests. The BAM-GGR 012 guideline for the analysis of bolted lid and trunnion systems has been fully implemented. Due to requirements by BAM, AREVA TN developed a new assessment strategy for fracture mechanical evaluation of welding seams. The material qualification and documentation is also an important aspect of BAM assessment; the qualification of borated aluminum basket material, the determination of strength values for thermal aged hardened aluminum alloys for the basket or consideration of high burn-up fuel assemblies are remarkable issues in this context. In addition, the consideration of the material compatibility, especially taking into account a transport after 40 years of dry interim storage in German facilities, has gained significant importance in the licensing process of the TN®24E. Next to obvious mechanical issues such as the assessment of shell ovalization under 9 m drop test scenario and its impact on basket load, thermo-mechanical interactions had to be addressed in the safety case. Due to BAM requirements, AREVA TN performed a full thermo-mechanical analysis of the cask behavior under fire test conditions. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Transport KW - RAM KW - Radioactive material cask KW - Nuclear fuel PY - 2013 SP - 1 EP - 12 PB - Omnipress AN - OPUS4-30270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar A1 - Scheidemann, Robert A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Crushing characteristics of spruce wood used in impact limiters of type B packages N2 - The material spruce wood is frequently used in impact limiters of Type B transport packages. In order to develop and parametrize an appropriate finite element material model, the crushing characteristics of spruce wood have been determined. A large number of crush tests was performed at BAM test facilities to generate a comprehensive data base. The parameter range in the crush test series results amongst others from the IAEA Regulations for the Safe Transport of Radioactive Material: e. g., the minimum temperature considered was -40 °C and the maximum strain rate applied was derived from the 9 m drop test. Cubical spruce wood specimens were tested using a servo hydraulic impact testing machine for initial strain rates of up to 30 1/s. A machine for guided drop tests was used for initial strain rates of up to 133 1/s. Drop masses of up to 1,200 kg were therefore used from drop heights of up to 9 m. The results presented in the paper include force-displacement characteristics and deformation behavior of spruce wood. Thereby the effects of strain rate, temperature, fiber-load orientation and lateral constraint are considered. Higher strain rates led to increasing crush forces, especially for loading perpendicular to the fiber. Higher temperature resulted in decreasing crush forces. The crush force level was significantly lower for load perpendicular to the fiber and the crushing characteristics differed compared to load parallel to the fiber. Without lateral constraint, the specimens expanded laterally, i. e. the plastic Poisson's ratio (if wood is considered a continuum) was not zero. Crush forces were comparably low and for load parallel to the fiber there was a significant softening effect. Lateral constraint of the specimens increased the crush force level and limited the softening effect. The results of the crush tests are used to derive modeling requirements and some assumptions for the development of a finite element material model for spruce wood. Possible future research work is pointed out. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Spruce wood KW - Crush test KW - Impact limiter PY - 2013 SP - 1 EP - 10 PB - Omnipress AN - OPUS4-30219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar A1 - Wille, Frank A1 - Droste, Bernhard A1 - Neumann, Martin T1 - Modeling of wood filled impact limiters for transport packages - 14111 N2 - Packages for the transport of SNF and HLW are usually equipped with impact limiters to reduce the loads that result from the regulatory 9 m drop test. A common impact limiter design in Germany is a welded steel sheet structure filled with wood. The material wood is the main energy absorber, while the steel sheet provides the integrity of the impact limiter. The IAEA allows mechanical safety cases of transport packages to be carried out computationally, as long as the models used are reliable. In this context, a Finite Element (FE) modeling approach for wood and its application to impact limiters in the calculation of a 9 m drop test is presented. A user material model for wood was developed for the dynamic FE-Code LS-DYNA. Its features are based on a series of crush tests with spruce wood specimens. The model considers wood as a material with transversely isotropic properties, i.e. in the directions parallel and perpendicular to the fiber. The plastic material behavior depends on the state of stress. This has shown to be important to account for the lateral constraint of wood in impact limiters resulting from steel sheet encapsulation. Lateral constraint or respectively, a multiaxial stress state, increases the compression strength level of wood, limits the softening effect and increases the hardening effect. Lateral constraint also increases volumetric and reduces deviatoric deformation. The wood material model considers various hardening and softening characteristics via input flow curves. It considers effects of temperature and strain rate on strength as well. The development of a multi-surface yield criterion and a plastic potential that enables the user input of plastic Poisson's ratios were the challenges during the development of material model. A dynamic FE calculation of a horizontal drop test with an 18,000 kg test package was performed. The wood material model was used to model the wooden impact limiter inlays. The impact limiter deformation and the package deceleration were compared to the experimental drop test results to rate the performance of the wood material model. T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 02.03.2014 KW - Transport package KW - Radioactive material KW - Spruce wood KW - Impact limiter KW - Material model KW - Finite element PY - 2014 SN - 978-0-9836186-3-8 SP - 1 EP - 10 AN - OPUS4-30653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Experience feedback from BAM safety assessment of transport packages N2 - BAM as competent authority regarding assessment of mechanical and thermal design, activity release and quality assurance measures of Type-B(U) transport packages developed a thesaurus of experience feedback topics from recent assessment procedures. The list is structured according to the European PDSR guide. It involves issues, which from BAM's point of view, needed clarification during the last package design assessment procedures. The list contains issues from Operation (e.g. deactivation of handling lugs not intended for package handling), maintenance (e.g. leak tightness of impact limiting devices) to technical assessment (e.g. formation of hydrogen by radiolysis and its impact on pressure and ignitability, consideration of ageing mechanisms, thermo-mechanical assessment, impact of gaps between content and flask) as well as to general and specific safety analysis report requirements (e.g. report structure and required data). T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Transport KW - RAM KW - Radioactive material KW - Cask KW - Flask KW - Nuclear fuel PY - 2015 SP - 1 EP - 7 AN - OPUS4-33420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Komann, Steffen A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package N2 - Transport packages shall satisfy various safety criteria regarding mechanical, thermal and radiation phenomena. Typical requirements focusing mechanical aspects are usually drop tests in accordance with IAEA regulations. The drop tests are usually carried out experimentally and, as an additional measure, finite element analyses (FEA) are performed. A specific part of the investigations presented is the evaluation of the welding seam connecting cask shell and cask bottom. Experimental results and FEA are presented and compared. The evaluation of the welding seam performed includes a variety of aspects. In addition to the experimental and analytical stresses determined, different standards are used to investigate a possible crack initiation. Several destructive and non-destructive tests are performed for quality assurance in the manufacturing process as well as for different input parameters. The necessary monitoring and non-destructive measurement methods to define the boundary conditions of the standards are introduced. Taking into account all required parameters, the welding seam is examined and evaluated using the failure assessment diagrams (FAD) of the respective standards. It can be shown under the given boundary conditions that considering the experimental data, the welding seam is in the context of crack initiation below the enveloping curve in the acceptable region. More critical drop tests to be conducted are proposed and need to be investigated in future work. T2 - Pressure Vessels & Piping Conference® 2022 CY - Las Vegas, NV, USA DA - 17.07.2022 KW - Transport package KW - Drop test KW - Fracture initiation PY - 2022 SP - 1 EP - 9 AN - OPUS4-55375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin T1 - Nuclear disposal - transport and storage of radioactive waste N2 - This presentation deals with transport, interim storage, and final disposal of radioactive material in Germany in the context of the University of Magdeburg course "Introduction to nuclear plant design and safety". The IAEA regulatory framework, relevant tests for ensuring safety, and transport packages are a major part of the transport aspect. Different interim storage designs are discussed as well as the current state of final repositories in Germany analyzed. Finally, a European perspective is given. T2 - Vorlesungsreihe "Introduction to nuclear plant design and safety" CY - Magdeburg, Germany DA - 13.06.2025 KW - Nuclear KW - Transport KW - Radioactive KW - Material PY - 2025 AN - OPUS4-63433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Reichardt, Adrian A1 - Wille, Frank A1 - Komann, Steffen A1 - Neumann, Martin T1 - Introduction of an ageing management approach for packages for the transport of radioactive materials N2 - With integration of the new para 613A into SSR-6 [1] the consideration of ageing mechanisms is now obligatory for the design of packages and their approval. In addition, para 809(f) of SSR-6 [1] requires consideration of the effects of storage on ageing mechanisms, safety analyses and operation and maintenance instructions. German competent authorities Bundesanstalt für Materialforschung und -prüfung (BAM) and Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) are considering the aspect of ageing in approval procedures. Ageing assessment is mainly focused on dual purpose casks (DPC) package designs which are long-term stored in interim storage facilities. For these package designs, the evaluation of ageing management is now mandatory for the maintenance of the package design approvals with a validity period of 5 years and beyond. The ageing management includes amongst others a gap analysis, the assessment of ageing effects and operational experiences during operation and interim storage. BAM works on the compilation of a guideline for implementation of paras 613A, 809(f) and 809(k) for packages requiring competent authority approval at the application procedure in Germany. The paper describes essential items of ageing mechanisms and will give a foresight to the ageing management evaluation by BAM. T2 - INMM & ESARDA Joint Annual Meeting CY - Online meeting DA - 30.08.2021 KW - Dual purpose casks KW - Ageing KW - SSR-6 KW - Interim storage KW - Ageing mechanisms KW - Transport of radaioactive materials PY - 2021 UR - https://www.abstractsonline.com/pp8/#!/10383/presentation/964 SP - 1 EP - 6 PB - Institute of Nuclear Materials Management (INMM) CY - Mount Laurel, NJ AN - OPUS4-53180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Neumann, Martin A1 - Reichardt, Adrian A1 - Komann, Steffen A1 - Wille, Frank T1 - Experiences with the implementation of ageing management for packages for transport of radioactive materials in Germany N2 - The consideration of ageing mechanisms is now obligatory for the design of transport packages with integration of the para 613A into IAEA SSR-6 (Rev. 1). In addition, para 809(f) of SSR-6 (Rev. 1) requires for packages intended to be used for shipment after storage the consideration of the effects of ageing mechanisms during storage in safety analyses and the implementation of corresponding instructions for operation and maintenance. Para 503(e) requires that these packages have been maintained during storage in a manner that all requirements specified in SSR-6 (Rev.1) and in the applicable certificates of approval have been fulfilled. The evaluation of ageing mechanisms and their effects including monitoring are part of BAM’s authority assessment tasks related to the mechanical and thermal package design and quality assurance aspects. BAM has compiled the guideline BAM-GGR 023 for the implementation of ageing assessment and related measures into the approval procedure. The implementation of ageing management measures is obligatory in case of extension/renewal of package design approval certificates. BAM has evaluated package designs which are used only for transport as well as package designs for long term interim storage. The assessment of ageing mechanisms associated with the identification of ageing effects on components is the main part of the ageing management plan (AMP). Different approaches regarding AMP structure are introduced. Experiences and approaches about the evaluation of components for the expected package operating time are shown. We are focusing the evaluations of proofs for not accessible and not replaceable components. Operational experiences for these package designs are available and should be considered in the ageing evaluation. Corresponding measures for package monitoring are to be derived based on these results. The measures for monitoring shall be fixed in the Ageing Surveillance Program (ASP) to maintain a specification conform package for the transport on public routes. We show exemplary how results from ageing evaluation during the approval procedure are transferred into the ASP. T2 - PATRAM 2025 CY - San Antonio, Texas , US DA - 27.07.2025 KW - RAM KW - Ageing management KW - Radioactive material KW - Transport PY - 2025 SP - 1 EP - 8 PB - INMM CY - Washington D.C. AN - OPUS4-63987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin T1 - Experiences with the implementation of ageing management for packages for transport of radioactive materials in Germany N2 - The consideration of ageing mechanisms is now obligatory for the design of transport packages with integration of the para 613A into IAEA SSR-6 (Rev. 1). In addition, para 809(f) of SSR-6 (Rev. 1) requires for packages intended to be used for shipment after storage the consideration of the effects of ageing mechanisms during storage in safety analyses and the implementation of corresponding instructions for operation and maintenance. Para 503(e) requires that these packages have been maintained during storage in a manner that all requirements specified in SSR-6 (Rev.1) and in the applicable certificates of approval have been fulfilled. The evaluation of ageing mechanisms and their effects including monitoring are part of BAM’s authority assessment tasks related to the mechanical and thermal package design and quality assurance aspects. BAM has compiled the guideline BAM-GGR 023 for the implementation of ageing assessment and related measures into the approval procedure. The implementation of ageing management measures is obligatory in case of extension/renewal of package design approval certificates. BAM has evaluated package designs which are used only for transport as well as package designs for long term interim storage. The assessment of ageing mechanisms associated with the identification of ageing effects on components is the main part of the ageing management plan (AMP). Different approaches regarding AMP structure are introduced. Experiences and approaches about the evaluation of components for the expected package operating time are shown. We are focusing the evaluations of proofs for not accessible and not replaceable components. Operational experiences for these package designs are available and should be considered in the ageing evaluation. Corresponding measures for package monitoring are to be derived based on these results. The measures for monitoring shall be fixed in the Ageing Surveillance Program (ASP) to maintain a specification conform package for the transport on public routes. We show exemplary how results from ageing evaluation during the approval procedure are transferred into the ASP. T2 - PATRAM 2025 CY - San Antonio, TX USA DA - 27.07.2025 KW - RAM KW - Ageing management KW - Transport KW - Radioactive material PY - 2025 AN - OPUS4-63985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin T1 - Conclusions from the first return campaign of vitrified High-Level Waste on sea going vessels from the competent authority N2 - Germany has to take back vitrified waste from the reprocessing plants in France and Great Britain. The waste resulted from decades of transporting spent fuel for reprocessing to La Hague and Sellafield. The return campaign from France was concluded in 2024 with the transport of five CASTOR® HAW28M casks to the interim storage facility in Philippsburg in southern Germany. The return of waste from Sellafield comprises three campaigns and a total of 20 CASTOR® HAW28M casks. The first campaign was performed in 2020, consisting of six CASTOR® HAW28M casks, while the second campaign was performed in March 2025, consisting of seven CASTOR® HAW28M casks. The casks were transported by rail from Sellafield to the port in Barrow-in-Furness, where they were loaded into a dedicated seagoing vessel, certified as INF Class 3 according to the INF Code. This was the first time that vitrified high level waste with considerable heat load was transported under a German design approval certificate. The third campaign is expected to be performed during 2026. BAM as part of the German competent authority system was among others involved in the assessment of the sea transport. BAM required for the first transport, among others, an assessment of temperature distribution during transport, logging of temperatures of cargo bays and graphical imaging of temperatures of the bay with the cask to ensure compliance with temperature specifications, e.g. maximal neutron absorber and gasket temperatures. Special interest was taken in the identification of possible events exceeding the specified temperatures considering the different philosophies of the IMDG code and its supplement the INF code regarding temperature control of hatches. Results show compliance with assumed conditions. T2 - PATRAM 2025 CY - San Antonio, TX, USA DA - 27.07.2025 KW - RAM KW - Transport KW - Radioactive material KW - Sea PY - 2025 AN - OPUS4-63983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -