TY - JOUR A1 - Neumann, Martin A1 - Wille, Frank A1 - Droste, Bernhard T1 - Scale model impact limiter in type assessment of radioactive material transport packages KW - Impact limiter KW - Shock absorber KW - Scaling KW - Radioactive KW - Material KW - Transport KW - Cask PY - 2008 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 19 IS - 1 SP - 53 EP - 57 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-17498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - König, S. A1 - Diersch, R. A1 - Lührmann, A. A1 - Müller, Karsten A1 - Neumann, Martin A1 - Quercetti, Thomas A1 - Droste, Bernhard T1 - Full-scale Drop Testing of the CONSTOR V/TC Package - Program and Preliminary Results KW - Fallversuche KW - Transportbehälter für radioaktive Stoffe PY - 2005 SN - 0893-6188 VL - 33 IS - 3 SP - 4 EP - 10 PB - Institute of Nuclear Materials Management CY - Northbrook, Ill. AN - OPUS4-6875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Neumann, Martin A1 - Wille, Frank ED - Topping, B. H. V. ED - M. Papadrakakis, T1 - Simulation of the Crushing of Wood Filled Impact Limiters for Packages of Radioactive Material N2 - Mechanical and thermal safety assessment of packages for transport of radioactive material in Germany is carried out by the Federal Institute for Materials Research and Testing (BAM). Both experimental and computational (analytical, numerical) methods combined with material and/or component tests are the basis for the state of the art safety assessment concept at BAM. The required mechanical tests according to IAEA regulations include, among others, a 9-m-drop-test on an unyielding target. Impact limiting components, which are attached to the cask at both ends, limit forces applied on the cask body and lid system by absorbing a major part of the impact energy. In Germany, impact limiters of packages for transport of radioactive materials are typically of steel-wood-sandwich construction, combining a relatively stiff steel structure bolted to the cask body, outer steel plates and different types of wood. By crushing the wood-steel-sandwich-structure between an unyielding target and the cask, the kinetic energy of a 9-m-free-fall is absorbed. The main energy absorber is wood under a high level of deformation. Wood under large deformations exhibits destruction of the fibre matrix. By analysing compression of the impact limiter wood after the drop tests with prototype casks for radioactive material, underlying mechanisms of wood crushing and corresponding energy absorption under large deformations are identified. Softening occuring at compression of the wood is a function of the lateral strain restriction of wood. Against the background of continuum mechanics an analogous model for compression of the fibre bundle is presented. The model takes the lateral strain restriction as triaxiality of the stress state into account. Further modelling possibilities for wood with a continuum approach are described. Different material laws in the explicit finite element code LS-DYNA are analysed for possible application using the analogous model for the fibre bundle. Small scale compression tests with wooden specimens are modelled in order to evaluate the ability of different modelling techniques to simulate softening. Although modelling of the compression of wood under large deformations is possible, softening could not be simulated purposefully. A drop test of a cask with impact limiting devices similar to existing impact limiters is simulated with different material laws for wood. The behaviour of impact limiting devices could not be simulated universally including the influence of the lateral strain restriction; nevertheless loading of the cask by crushing of the impact limiter could be simulated purposefully. Verification with experimental results is essential. T2 - 9th International Conference on Computational Structures Technology CY - Athens, Greece DA - 2008-09-02 KW - Radioactive material KW - Transport KW - Impact limiter KW - Simulation KW - FEM PY - 2008 SN - 978-1-905088-22-5 IS - Paper 22 SP - 1 EP - 21 PB - Civil Comp Press CY - Stirlingshire, Scotland, UK AN - OPUS4-17891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Müller, Karsten A1 - Neumann, Martin A1 - Kadji, Arsène Brice A1 - Droste, Bernhard T1 - Drop Test Results of the Full-scale CONSTOR V/TC Prototype T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 PY - 2007 IS - Abstract #65 SP - 1 EP - 7 PB - Institute of Nuclear Materials Management AN - OPUS4-17838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musolff, André A1 - Müller, Karsten A1 - Neumann, Martin A1 - Kadji, Arsène Brice A1 - Droste, Bernhard T1 - Results of full scale CONSTOR® V/TC prototype 9 m horizontal drop test KW - Drop testing KW - Impact limiter KW - Finite element method KW - Full scale cast PY - 2008 DO - https://doi.org/10.1179/174651008X382951 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 19 IS - 4 SP - 228 EP - 232 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-18625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Neumann, Martin A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Weber, Mike A1 - Qiao, Linan A1 - Droste, Bernhard T1 - Mechanical assessment within type B packages approval - the application of static and dynamic calculation approaches T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Mechanische Bewertung KW - Radioaktives Material KW - Numerische Analyse PY - 2010 SP - 1 EP - 8(?) AN - OPUS4-23384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6, BS 7910 and API 579-1/ASME FFS1. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the above-mentioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Transport Package KW - Welding KW - Fracture Mechanics PY - 2023 SP - 1 EP - 10 AN - OPUS4-57696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin T1 - Friction coefficients for wood-wood and wood-steel interfaces in impact limiters for transport casks N2 - Wood is widely used in impact limiters of transport casks for radioactive material. Encapsulated by an outer and inner steel structure, spruce wood is often applied in layers of alternating direction. The friction at the interfaces between these layers is of crucial importance for the impact and energy absorption e.g., at an accidental impact of a cask against a hard target. In order to get detailed information for corresponding numerical calculations, in this study the friction coefficient for the combinations wood-wood and wood-steel was measured in the temperature range between -40°C and 90°C according to the relevant stress conditions for such casks. Results show decreasing friction with increasing temperature, ranging from 0.43 at -40°C to 0.22 for 90°C for wood-steel combinations and from 0.3 at -40°C to 0.24 at 90°C to for a wood-wood combination. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-les-Pins, France DA - 11.06.2023 KW - Wood KW - Friction KW - Transport cask PY - 2023 AN - OPUS4-57702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin T1 - Transport of HLW canisters on sea vessels N2 - Germany had been transporting spent fuel to the reprocessing plant in Sellafield and La Hague for decades until around 2005. Resulting from the obligation to take back the vitrified high-level waste from reprocessing six CASTOR® HAW28M filled with 168 canisters with radioactive waste in vitrified form were transported from Sellafield to the interim storage facility Biblis in 2020. Rail wagons were used for the transport to the port in Barrow-in-Furness, where they were loaded into a dedicated seagoing vessel, certified as INF Class 3 according to the INF Code. This was the first time that vitrified high level waste with considerable heat load was transported under a German design approval certificate. BAM was involved in the authority assessment of the conditions for the sea transport. For the first transport BAM required among others, assessment of temperature distribution during transport, logging of temperatures of cargo bays and graphical imaging of temperatures of the bay with the cask in order to ensure compliance with temperature specifications, e.g. maximal neutron absorber and gasket temperatures. Special interest was taken in the identification of possible events exceeding the specified temperatures considering the different philosophies of IMDG code and its supplement INF code regarding temperature control of hatches. Results show compliance with assumed conditions. T2 - RAMTrans 2024 CY - London, GB DA - 14.05.2024 KW - Transport KW - Spent nuclear fuel KW - Ship KW - Sea KW - High level waste PY - 2024 AN - OPUS4-60091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Gleim, Tobias A1 - Gradt, Thomas A1 - Wille, Frank T1 - Friction coefficients for wood-wood and wood-steel interfaces in impact limiters for transport casks N2 - Wood is widely used in impact limiters of transport casks for radioactive material. Encapsulated by an outer and inner steel structure, spruce wood is often applied in layers of alternating direction. The friction at the interfaces between these layers is of crucial importance for the impact and energy absorption e.g., at an accidental impact of a cask against a hard target. In order to get detailed information for corresponding numerical calculations, in this study the friction coefficient for the combinations wood-wood and wood-steel was measured in the temperature range between -40°C and 90°C according to the relevant stress conditions for such casks. Results show decreasing friction with increasing temperature, ranging from 0.43 at -40°C to 0.22 for 90°C for wood-steel combinations and from 0.3 at -40°C to 0.24 at 90°C to for a wood-wood combination. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Wood KW - Friction KW - Transport cask PY - 2023 SP - 1 EP - 11 AN - OPUS4-57334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -