TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Maiwald, Michael T1 - Produzieren Sie schon oder kalibrieren Sie noch? – Online-NMR-Spektrometer als Smarte Feldgeräte N2 - Der Vortrag zeigt allgemeine Anforderungen an "smarte Feldgeräte" und deren Entwicklung in den vergangenen Jahren. Am Beispiel eines smarten Online-NMR-Sensors, der in einem EU-Projekt von der BAM entwickelt wurde, wird die Umsetzung der Anforderung aufgezeigt. Schließlich werden weitere Technologieanforderungen und Lösungsansätze vorgestellt. T2 - ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen CY - Aachen, Germany DA - 10.09.2018 KW - Prozessanalytik KW - Prozessindustrie KW - Online-NMR-Spektroskopie KW - Datenkonzepte KW - Datenanalyse KW - CONSENS PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201855229 U6 - https://doi.org/10.1002/cite.201855229 SN - 0009-286X N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. VL - 90 IS - 9 SP - 1236 EP - 1236 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-45901 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Jurtz, N. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Accelerating Chemical Process Development and Manufacturing – Design and Validation of an Integrated NMR Micro Mixer N2 - The future competitiveness of the process industry and their providers depends on its ability to deliver high quality and high value products at competitive prices in a sus-tainable fashion, and to adapt quickly to changing customer needs. The transition of process industry due to the mounting digitalization of technical devices and their pro-vided data used in chemical plants proceeds. Though, the detailed characteristics and consequences for the whole chemical and pharmaceutical industry are still unfore-seeable, new potentials arise as well as questions regarding the implementation. As the digitalization gains pace fundamental subjects like the standardization of device interfaces or organization of automation systems must be answered. Still, process in-dustry lack of sufficient system and development concepts with commercial advantage from this trend. Compared to traditional batch processes, intensified continuous production allows new and difficult to produce compounds with better product uniformity and reduced consumption of raw materials and energy. Flexible (modular) chemical plants can pro-duce various products using the same equipment with short down-times between campaigns, and quick introduction of new products to the market. Full automation is a prerequisite to realize such benefits of intensified continuous plants. In continuous flow processes, continuous, automated measurements and closed-loop control of the product quality are required. Consequently, the demand for smart sensors, which can monitor key variables like component concentrations in real-time, is increasing. Low-Field NMR spectroscopy presents itself as such an upcoming smart sensor1,2 (as addressed, e.g., in the CONSENS project3). Systems utilizing such an online NMR analyzer benefits through short development and set-up times when applied to modular production plants starting from a desired chemical reaction3. As an example for such a modular process unit, we present the design and validation of an integrated NMR micro mixer based on computational mod-elling suited for a desired chemical reaction. This method includes a proper design of a continuous reactor, which is optimized through computational fluid dynamics (CFD) for the demands of the NMR sensor as well as for the given reaction conditions. The system was validated with a chemical reaction process. References: [1] M. V. Gomez et al., Beilstein J. Org. Chem. 2017, 13, 285-300 [2] K. Meyer et al., Trends Anal. Chem. 2016, 83, 39-52 [3] S. Kern et al., Anal Bioanal Chem. 2018, 410, 3349-3360 T2 - Kolloquium Arbeitskreis Prozessanalytik CY - Hannover, Germany DA - 03.12.2018 KW - NMR KW - Reaction Monitoring KW - Digital Twin KW - Flow Chemistry KW - Process Analytical Technology PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-46972 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Jurtz, N. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Accelerating chemical process development and manufacturing – Design and validation of an integrated NMR micro mixer N2 - The future competitiveness of the process industry and their providers depends on its ability to deliver high quality and high value products at competitive prices in a sustainable fashion, and to adapt quickly to changing customer needs. The transition of process industry due to the mounting digitalization of technical devices and their provided data used in chemical plants proceeds. Though, the detailed characteristics and consequences for the whole chemical and pharmaceutical industry are still unforeseeable, new potentials arise as well as questions regarding the implementation. As the digitalization gains pace fundamental subjects like the standardization of device interfaces or organization of automation systems must be answered. Still, process industry lack of sufficient system and development concepts with commercial advantage from this trend. Intensified continuous processes are in focus of current research. Compared to traditional batch processes, intensified continuous production allows new and difficult to produce compounds with better product uniformity and reduced consumption of raw materials and energy. Flexible (modular) chemical plants can produce various products using the same equipment with short down-times between campaigns, and quick introduction of new products to the market. Full automation is a prerequisite to realize such benefits of intensified continuous plants. In continuous flow processes, continuous, automated measurements and closed-loop control of the product quality are required. Consequently, the demand for smart sensors, which can monitor key variables like component concentrations in real-time, is increasing. Low-Field NMR spectroscopy presents itself as such an upcoming smart sensor (as addressed, e.g., in the CONSENS project – http://www.consens-spire.eu/). Systems utilizing such an online NMR analyzer benefits through short development and set-up times when applied to modular production plants starting from a desired chemical reaction. As an example for such a modular process unit, we present the design and validation of an integrated NMR micro mixer based on computational modelling suited for a desired chemical reaction. This method includes a proper design of a continuous reactor, which is optimized through computational fluid dynamics (CFD) for the demands of the NMR sensor as well as for the given reaction conditions. The system was validated with a chemical reaction process. T2 - ProcessNet PAAT Jahrestreffen CY - Cologne, Germany DA - 12.11.2018 KW - NMR KW - Reaction monitoring KW - Digital twin KW - Flow chemistry KW - Process analytical technology PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-46579 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -