TY - JOUR A1 - Ferrero, Fabio A1 - Meyer-Scherf, Ronald A1 - Kluge, Martin A1 - Schröder, Volkmar A1 - Spoormaker, T. T1 - Study of the spontaneous ignition of stoichiometric tetrafluoroethylene-air mixtures at elevated pressures N2 - The Ignition Temperature (IT) of stoichiometric tetrafluoroethylene–air mixtures on hot walls was determined in a 3-dm³-reactor. Tests at elevated pressure conditions were performed, namely at 5, 15 and 25 bar(a), showing a decrease of the IT with the initial pressure. Furthermore, the measured ignition temperatures of stoichiometric tetrafluoroethylene–air mixtures were lower than the ignition temperatures required for the decomposition pure tetrafluoroethylene (Minimum Ignition Temperature of Decomposition, MITD) reported in previous works. Equations from the Semenov thermal explosion theory on spontaneous ignition were used to identify approximate combustion kinetics of tetrafluoroethylene from the experimental results. The determined kinetics was used for the prediction of the IT of stoichiometric tetrafluoroethylene-air by simplified calculation methods. A very good agreement with the experimental results was observed. KW - Tetrafluoroethylene KW - Combustion KW - Ignition KW - Self-ignition PY - 2013 U6 - https://doi.org/10.1016/j.jlp.2013.02.008 SN - 0950-4230 SN - 1873-3352 N1 - Geburtsname von Meyer-Scherf, Ronald: Meyer, R. - Birth name of Meyer-Scherf, Ronald: Meyer, R. VL - 26 IS - 4 SP - 759 EP - 765 PB - Butterworth CY - Guildford, Surrey AN - OPUS4-28548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ferrero, Fabio A1 - Kluge, Martin A1 - Spoormaker, T. A1 - Schröder, Volkmar T1 - On the minimum ignition temperature for the explosive decomposition of tetrafluoroethylene on hot walls: Experiments and calculations N2 - The Minimum Ignition Temperature of Decomposition (MITD) of tetrafluoroethylene in a partially heated pipe was analyzed for different initial pressures (5, 10 and 15 bara). The pipe used had an internal length of 1 m, an internal diameter of 30 mm with a volume of about 0.7 dm³ and was vertically oriented. Pressure at the pipe top and temperature at four different locations along the pipe axis were measured. Tetrafluoroethylene was found to decompose at lower temperatures for increasing initial pressures, in agreement with previous tests with reactors with fully heated walls. A complete passive quenching in the non-heated part of the pipe was observed only for an initial pressure of 5 bara, while for higher initial pressures, the decomposition propagated completely along the test pipe. Moreover, the test results on the MITD were compared with data from previous experiments in fully heated 0.2 and 3 dm³ cylindrical reactors and showed a decrease of the MITD with the heated volume through heated surface ratio of the vessel. Furthermore, the prediction of the MITD of tetrafluoroethylene by simplified calculation methods was attempted, showing a good agreement with the experimental results. KW - Tetrafluoroethylene KW - Decomposition KW - Self-ignition PY - 2012 U6 - https://doi.org/10.1016/j.jlp.2011.11.005 SN - 0950-4230 SN - 1873-3352 N1 - Geburtsname von Kluge, Martin: Beckmann-Kluge, M. - Birth name of Kluge, Martin: Beckmann-Kluge, M. VL - 25 IS - 2 SP - 293 EP - 301 PB - Butterworth CY - Guildford, Surrey AN - OPUS4-25138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ferrero, Fabio A1 - Meyer-Scherf, Ronald A1 - Kluge, Martin A1 - Schröder, Volkmar A1 - Spoormaker, T. T1 - Self-ignition of tetrafluoroethylene induced by rapid valve opening in small diameter pipes N2 - This work investigates the ignition of tetrafluoroethylene induced by the adiabatic compression that can arise by activating a high speed valve separating two portions of a pipeline with a high pressure difference. In the tests performed the high pressure zone contained tetrafluoroethylene at pressures between 15 and 30 bar. For the low pressure zone, experiments with nitrogen, air and tetrafluoroethylene were carried out. The pressure range in the low pressure zone was comprised between 0.05 and 1 bar. The pipe diameters analyzed were 15 and 20 mm. For the analyzed geometries, special conditions were required in order to reach reproducible ignitions, namely air at temperatures of at least 105 °C had to be present in the compression pipe. Furthermore, a minimum length of the compression pipe had to be used. The current work describes the experimental setup employed for the tests and discusses the achieved results. Numerical simulations were performed in order to clarify unexpected findings. KW - Tetrafluoroethylene KW - Decomposition KW - Self-ignition KW - Adiabatic compression PY - 2013 U6 - https://doi.org/10.1016/j.jlp.2012.10.006 SN - 0950-4230 SN - 1873-3352 N1 - Geburtsname von Meyer-Scherf, Ronald: Meyer, R. - Birth name of Meyer-Scherf, Ronald: Meyer, R. VL - 26 IS - 1 SP - 177 EP - 185 PB - Butterworth CY - Guildford, Surrey AN - OPUS4-27685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ferrero, Fabio A1 - Zeps, Robert A1 - Kluge, Martin A1 - Schröder, Volkmar A1 - Spoormaker, T. T1 - Analysis of the self-heating process of tetrafluoroethylene in a 100-dm³-reactor N2 - There is a lack of data on the self-ignition behaviour of tetrafluoroethylene in industrial sized equipment. Therefore, a facility was designed and constructed for the determination of the Minimum Ignition Temperature of Decomposition of tetrafluoroethylene in a cylindrical reactor with a volume of 100 dm3. Tests with initial pressures of 5 and 10 bar(a) were performed. The Minimum Ignition Temperature of Decomposition of tetrafluoroethylene was observed to decrease with the initial pressure, in agreement with previous experiments with small scale cylindrical vessels. This paper describes the test set-up und gives an overview of the achieved experimental results. In particular the effect of the reactor orientation (vertical or horizontal) is discussed. Furthermore, simplified equations from the Semenov thermal explosion theory are used to attempt extrapolations of previous and current data on the Minimum Ignition Temperature of Decomposition of tetrafluoroethylene to other vessel volumes or initial pressures. Moreover, the experimental data are plotted together against the heated volume to heated surface ratio, which should provide a better extrapolation to other vessel dimensions by taking into account that the efficiency of the dispersion of the heat generated by the reaction is different for two reactors with the same volume but different diameter. Finally, simplified methods for predicting the Minimum Ignition Temperature of Decomposition of tetrafluoroethylene presented previously by the authors are validated for large scale reactors with the experimental data collected within the current work. KW - Tetrafluoroethylene KW - Decomposition KW - Self-ignition KW - Large-scale reactor PY - 2012 U6 - https://doi.org/10.1016/j.jlp.2012.06.001 SN - 0950-4230 SN - 1873-3352 N1 - Geburtsname von Kluge, Martin: Beckmann-Kluge, M. - Birth name of Kluge, Martin: Beckmann-Kluge, M. VL - 25 IS - 6 SP - 1010 EP - 1017 PB - Butterworth CY - Guildford, Surrey AN - OPUS4-26786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -